Micro PLATO® Author Language
Version 4.1

Reference Manual

MPAL REFERENCE MANUAL REVISION RECORD

REVISION DESCRIPTION
(9/1/88) Manual released, reflecting Version 4.0 software.
A (3/15/89) Manual revised to reflect Version 4.1 software.

Publication Number 97602372A

Revision letters I, O, Q, S, X, and Z are not used.

Copyright 1988, 1989 by Control Data Corporation.

All rights reserved.

Printed in the United States of America.

Address comments about
this manual to:

Control Data Corporation
PLATO Development, BLCEIM
8800 Queen Avenue S
Bloomington, MN 55431

SR W
Or use the comment sheet in the
back of this manual.

Contents

Chapter 1—Introduction

Overview ; 1-1

About This Manual 1-1

Notational Conventions 13

Chapter 2—Micro PLATO Language Commands

The commands are presented in this chapter in alphabetical order. 2-1

Chapter 3—Micro PLATO Language Pseudo Commands

Pseudo Commands 3-1
C 32
= 3-3
$/block B 3-4
$/endlabel o 3-5
$/label 3-6
$/list o 3-7
$/touch S 39
$/use 3-10

Chapter 4—Micro PLAIO System Reserved Words

System Reserved Words J 4-1
zanscnt il 10 sed 4-2
zargs 4-3
zargsa 4-4
zbcolor 4-5
zbpalette ' 4-6

zbuttons 4-7

ii

zcharheight and zcharwidth
zclock

zcomm

zdata

zentire

zextra

zfcolor

zfiplen

zfpalette

zjcount

zjudged

zkey

zlbuttons

zldone

zmode

znbuttons

znscreens

zntries

zopent

zorder

zpalette

zplanes

zptrlx and zptrly
zptrx and zptry
zZrecs

zrestart

zreturn

zrouten

zscore

zscreen

ZSCrrecs

zspell

ztouchstatus
ztouchx and ztouchy
Zttype

ztstype

zwcount

zwherex and zwherey
zxpixels and zypixels

4-8

4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48

Chapter 5—Micro PLATO Language System Defined Functions

System Defined Functions
Mathematical Functions
System Functions

zbdata
zk
zlength
zvloc

Chapter 6—Micro PLATO Language Argument Passing

Introduction
Input Arguments
Output Arguments
Omitted Arguments
Expressions and Variables as Arguments
Value Type Conversion
Restrictions
Argument Evaluation Order
Evaluation and Assignment of Arguments
Argument Passing Syntax
Passing Copies of Arrays
Returning Copies of Arguments
Passing by Address
Adaptable Arrays

5-1
5-1
5-2

5-4
55

6-1
6-2
6-3
6-4
6-5
6-6
6-6
6-7
6-8
6-8
6-9
6-11
6-12

iii

Chapter 7—Micro PLATO Language Unit Libraries

Introduction 7-1
Using Unit Libraries 7-2
Restrictions 72
Examples of Unit Libraries 7-3
A Simple Library 7-3
Multiple Libraries 7-4
A Lesson Driver Stored in a Library 7-7
A Library with Private Units 7-8

Chapter 8—Micro PLATO Language Serial Channel Input/Output

Introduction 8-1
Definitions and Terms 8-1
RS232 Connections and Cables 8-1
Serial Channel Programming 8-4
Interrupt Control 8-7
Checklist for Problems ' 8-9
Examples 8-9

Chapter 9—Videodisc Library

Overview 9-1
Getting Started 941
Obtaining the Units 042
Defines Needed 9-3
Library Contents 9-4
Library Control Units 9-4
vinit 9-5

vfinish 9-6
Videodisc Control Units 9-7
vaudio 9-8

vgetaud 99

vdir 9-10

vgetdir 9-11

vnum 9-12

iv

vgetnum 9-13

vspeed 9-14
vgetspd 9-15
vdisp 9-16
vgetdisp 9-17
Videodisc Command Units 9-18
vsetfrm 9-19
vgetfrm 9-20
vplay 9-21
vplayw 922
vstart 9-23
vstop 9-24
vwait 925

Chapter 10—Digital Audio Library

Overview 10-1
Getting Started 10-1
Obtaining the Units 10-2
Defines Needed , 10-2
Library Contents 10-3
Library Control Units 10-3
ainit 10-4

afinish 10-5

Digital Audio Control Units 10-6
aopen 10-7

aclose 10-9

asetoutp 10-10

Digital Audio Command Units 10-11
aplay 10-12

aplayw 10-13

astop 10-14

await 10-15

atest 10-16

Chapter 11—Micro PLATO Language Routines Library

Overview
Automatic Sign-on / Sign-off Routines
netinit
signon
signoff
Modem Autodial Routines
dtoa
comm
- Sending Data
Sending and Receiving Data
Receiving Data
Date, Time and Day Routines
date
clock
day
cdates
cdatef
cdatev
ctimes
ctimef
ctimev

vi

11-1
11-2
11-4
11-5
11-7
11-8
119
11-11
11-12
11-12
11-14
11-15
11-16
11-17
11-18
11-20
11-22
11-24
11-26
11-28
11-30

Chapter 1
Introduction

Overview
About This Manual
Notational Conventions

—_

Overview

The Micro PLATO Authoring System (MPAS) is designed to allow
courseware authors to develop and deliver computer-based
educational material in a microcomputer environment. To the user,
courseware delivered by MPAS appears very similar to courseware
delivered by the mainframe PLATO system. (The mainframe PLATO
system is often called the central PLATO system.) The most
noticeable difference between the two systems is that displays plot
much faster in the micro environment.

The language used to develop MPAS courseware is a high-level
language called the Micro PLATO Author Language. The Micro
PLATO Author Language is very similar to the TUTOR Language,
which is used on the central PLATO system. The Micro PLATO
Author Language is executed by a microprocessor that is inside the
microcomputer. Therefore, each user has a processor devoted solely
to his or her purposes. On the other hand, the TUTOR Language is
executed by the mainframe computer. Therefore, all central PLATO
users share the same processor.

About This Manual

This manual explains how to use the Micro PLATO Author Language
to write lessons that can then be condensed and executed via the
Micro PLATO Authoring System (MPAS). A detailed explanation of
MPAS can be found in the Micro PLATO Authoring System User’s
Guide, which accompanies this manual. A brief description of the
remaining chapters in this manual follows.

1-1

Micro PLATO Author Language Reference Manual

1-2

Micro PLATO Language Commands provides, in alphabetical order,
detailed documentation on every command’s syntax and application.

Micro PLATO Language Pseudo Commands provides, in alphabetical
order, detailed documentation on every pseudo command’s syntax
and application.

Micro PLATO System Reserved Words provides, in alphabetical order,
detailed documentation on every reserved word’s syntax and
application.

Micro PLATO Language System Reserved Functions provides, in
alphabetical order, detailed documentation on every system reserved
function’s syntax and application.

Micro PLATO Language Argument Passing presents an overview of the
argument passing capabilities of the language.

Micro PLATO Language Unit Libraries presents an overview of the unit
library capabilities of the language.

Micro PLATO Language Serial Channel Input/Output presents an
overview of the serial channel input/output capabilities of the
language.

Videodisc Library provides information on the videodisc player and
how to use it in conjunction with the language.

Digital Audio Library provides information on the using digitized
audio in conjunction with the language.

Micro PLATO Language Library Routines describes the standard library
routines that are a part of the language.

o

Introduction

Notational Conventions

The following conventions are used in this manual:

e All Micro PLATO commands are surrounded by hyphens
and printed in PLATO characters; for example, -at -.

e All Micro PLATO reserved words are surrounded by
asterisks and printed in PLATO characters; for example,
*zreturnx.

e All Micro PLATO function names are surrounded by
asterisks and written in PLATO characters; for example,
*zkok.

e Shifted function keys are indicated by affixing a 1 to the end
of the key name. For example, SHIFT-BACK is also known as
BACK1 and SHIFT-NEXT, as NEXT1.

These delimiting symbols must not be used when you are writing
code. For example, if we say that the -compute- command sets
*zreturn#, your code would look like this:

compute result,buf(1),len
1f zreturn > -1
at 1918

. write An error occurred.
endif

Some commands are used only to give information to the condensor.
These "non-executable" commands, such as -define-, -keylist -,
and -darrow-, are indicated by the words "Non-executable
command" in the upper right corner of the first page of the
description. They are not executed when the lesson is run, but their
inclusion in the lesson has some effect on its execution (for example,
the -key1ist - command is not executable, but the lists prepared
with it can be used with the -keytype- command).

1-3

Chapter 2
Micro PLATO Language Commands

The commands are presented in this chapter in alphabetical order.

-allow-

allow erase

allow keys,plato,blanks, arrow, jkeys, lkeys
allow $$ set opposite of default
settings

The -allow- command is the opposite of an -inhikit- command; it
permits an action that would otherwise have been inhibited. The

-al low- command is provided because the settings for the -inhikit-
command are cumulative throughout a main unit. It is sometimes
necessary to cancel a particular setting of -inhikit - without
disturbing the other -inhibkit - status. All settings of both -inhikit-
and -al low- are cleared when entering a new main unit.

The default settings are the same as these two statements:

allow arrow, erase, keys,plato, jkeys
inhikit klanks

A blank tag -al low- sets the opposite of the default settings, and is the
same as these statements:

inhibit arrcw,erase,keys,plato, jkeys
allow blanks

The tags for -al low- are:

arrow Display the arrow symbol ($) on the screen
when an -arrow- command is encountered.

blanks Judging will be initiated even if a student
presses a j key without entering a response.
NOTE: The default setting at an arrow is
-inhibkit bklanks-.

erase Do a full-screen erase when moving from one
main unit to another.

-allow-

jkeys

keys

lkeys

plate

2-2

Non-function initiate-judging keys will be
displayed.

Keys will break through Micro PLATO

-pause-.
Enable local key processing.
Start processing output from the CPU. Output

from the CPU is processed until an
-inhibit plato- is executed.

-ansv-

ansy 1492 $$ exact answer required

ansy weight $$ variable ok

ansv x-2 $$ expressions ok

wrongyvy 388,18 $% range is + or - 14

ansy 79,2% $$ 70 is the expected response,

$% with a range of + or - 2%

The -ansv- and -wrengvy- are used to judge numeric or algebraic
answers. If the response matches the tag of the -ansv- (within the
specified tolerance), an "ok" judgment is given and the indented
commands (if any) after the -ansv- are executed. If a -wrongv- is
matched, a "no" judgment is given, and the indented commands are
executed.

The tolerance can be specified as a range or a percentage deviation. If
no tolerance is desired, omit the second argument.

Note that currently, only expressions that evaluate to less than 215-1 can
be used in the tag of the -ansv- command. If you want to use an
expression that evaluates to a larger value, -calc- the expression into a
floating point variable and use that as the tag of the -ansv-. Also, if
you want to use a number larger than 215-1 in the tag of the -ansv-, it
must be written in floating point format (with a decimal point). In other
words, -ansv 98§88- must be written as -ansv 98088, &-.

-answer-

answer <A An> [big huge]l elephant.

wrong <a an> [pink red] elephant

answer {a,var,count) $$ embedded variable
answer $% blank tag

The -answer- and -wreng- are judging commands. The tag shows the
expected response of the student. If the student’s response matches the
tag of an -answer- command, an "ok" judgment is given and the
indented commands (if any) after the -answer- are executed. If the
student’s response matches a -wrong- command, a "no" judgment is
given and the indented commands are executed.

Words enclosed in < » are optional words; the student can include any
or none of them.

Words enclosed in [] are required synonyms. The response must
include one and only one of the words from each []. Words not
enclosed in brackets are simply individual required words.

Punctuation marks are treated as individual words. These punctuation
marks are allowed: ,.?!;:" If the -answer- contains a punctuation
mark, it must be included by the student. The apostrophe (as in the
word "don’t") is treated as a letter, not as punctuation.

For embedded -answer- commands, the entire command must be
embedded. If the answer must be composed of several pieces, it must be
prepared with a -pack-, as follows:

pack string,count,l see a {a,var,namelen®
answer da,string,count)
Note that the delimiter for Micro PLATO -answer- is a space. A comma

is treated as a required word for the student’s response, not as a
delimiter.

-answer-

Parentheses () are treated as letters. Do not use them to enclose
synonyms; use the square brackets [] for synonyms. The -answer-
command with no tag will be matched if the student’s response is the
SPACEBAR, NEXT or a jkey alone (¥zjcount* = @), or one of the
symbols that are considered punctuation in Micro PLATO (,.?!;:"). If
the touch panel is enabled, any touch will match the blank tag
-answer-. Be sure to include an -al low blanks- when using the
blank tag form of the -answer- command.

The following shows how you might use the command with no tag:

arrow S1@;buf (1) ,38
allow blanks
enable touch
jkey back
answer
at 1818
- write answer matched
endarrow

For this example, any of the following responses will be judged correct:

* a SPACEBAR press

* atyped punctuation mark

* atouch

* any combination of the above three
* ajkey

See also the documentation for -arrow-, -ansv-, —answerc-, and
-exact -.

-answerc-

answerc (expr)sthis is the negative answers
answer for zerotanswer for onets
answer for three or greater

The -answerc- and -wrongc- commands are conditional forms of the
-answer- and -wrong- commands.

Note that in the above example, there is no answer given for the case
where the expression evaluates to 2.

The only delimiter permitted with these commands is the text
delimiter(s). To create this symbol, first press the ACCESS key, then
press the COMMA key (,).

Conditional commands must have at least two options. A conditional
command with only one option will give a condense error. For
example:

answerc exprianswer for negative values
will give a condense error.

The end of the line in an -answerc- or a -wreongc- is treated like a
space. For example:

answerc exprinegative
answerszere or greater

is the same as

answerc exprinegative answertzero or greater

Py

-arrow-

arrow place;buffer,maxchars
arrow x,y3buff (1), long

The -arrow- command signals that the student is expected to type a
response. An is plotted on the screen when the student can begin to

type.

The first tag of the -arrow- specifies where the » will appear. It can be
either fine (x,y) or coarse (row/column) grid and must be followed by a
semicolon.

The second tag gives the start of a buffer for storing the student’s
response. The most convenient buffer is an indexed 8-bit array:

define 1,8: buffer(58)

When an array is used, you must index it (you cannot use the name of
the array alone). For example,

arrow 1g1d;buffer (1) ,58
The second tag is followed by a comma.

The third tag gives the length of the judge buffer; that is, how many
characters the student will be allowed to type (must be greater than
zero). The number of characters actually typed by the student is given
by the reserved word #*z jcount *.

When you first enter an arrow, the answer buffer is zeroed.

Note that the sequence of judge and response commands started by an
-arrow- must be terminated by an -endarrow- command.

2-7

~aITow-

The indented commands that follow the -arrow- are executed
immediately. When an exdented (that is, nonindented) command is
encountered, the » is plotted and the computer waits for the student to
enter a response. When the student initiates judging (by pressing NEXT
or some other jkey or by exceeding the - force long-), processing
resumes at that first exdented command.

The exdented commands (that may include both regular and judging
commands) are then evaluated in the order in which they appear until a
judging command that matches the student’s response is found. If a
match is found, the indented commands that immediately follow the
matched command are executed. Then, if the response received an "ok"
judgment, control passes to the -endarrow- and out of the range of the
arrow.

If a -wrong- type command is matched or the -endarrow- is reached
before any answer-judging command is matched, the judgment is "no."
Execution stops and waits for the student to type another response. As
soon as the student presses any key, control returns to the -arrow- and
execution resumes with the first exdented command.

If any answer-judging command matched and there is an -i fmatch-
command in the -arrow- structure, the indented code after the
-1 fmatch- will be executed each time through the -arrow-.

See also the documentation for -answer-, -long-, - force-, and
-1ifmatch-.

2-8

-at-

at l inespace $$ coarse grid

at 1298 $% line 12, space 8§
at 723 $$ line 7, space 23
at finex, finey $$ fine grid

at 123, 448

The -at - command indicates the starting position of display on the
panel. It can be expressed in fine or coarse grid. The tag canbe a
calculated expression. It sets the variables xzwherex* and *zwherey*
according to the tags.

The fine grid units are in dots (0-511). Point (0,0) is the lower left corner
in fine grid. The coarse grid units are lines (1 at top to 32 at bottom) and
spaces (1 at left to 64 at right of the screen). For example, the top left
character position on the screen is 101, the bottom left is 3201, the top
right is 164 and the bottom right is 3264. The address of a character
always refers to the lower left hand corner of the character box (8 screen
dots wide by 16 dots tall).

On some machines (including the IBM PC and the CDC PPTS), the dots
in the vertical direction are scaled so there are 256 lines of 512 dots.
Characters are thus 8 dots wide and 8 dots tall.

-atnm-

atrm 14208 $$ -at- with No change to
Margin

atnm pos $$ variables & expressions ¢k
atrnm 289,158 $$ fine or coarse grid

The -atnm- command, like -at -, sets a screen location for displaying
text, data, and drawings. The -atnm- command alters *zwherex* and
xzwherey* but does not set a new left margin for continued lines of the
display. Continued lines are aligned with the margin set by a preceding
-at -, or if there is no -at -, to the default position, character space 1.

When -atrm- is used with a continued -write-, the left margin of
only the first line of the -write- is affected. Subsequent lines of the
continued -write- use the left margin set by a previous -at-. Thisis
convenient for text with indented titles and such.

For example, the following code:

at 2413
atnm 2428
write First Heading
First line of some paragraph of text
Second line of the paragraph of text
atrm 2828
write Second Heading
More text in second paragraph of
display.

produces this display:

First Heading
First line of some paragraph of text
Second line of the paragraph of text
Second Heading
More text in second paragraph of
display.

2-10

attach myset
attach (file(1))

-attach-

3 attach file named "myset"
$% drive 8 file attached shared

attach (file(1)),dnum $$ "drnum" is drive specifier

attach myset,,-1

$F drive omitted, rw mode

attach (file(1)),8,8 $$ file on drive # attached ro

attach

$$ detach the current file

The -attach- command forms a connection between the Micro PLATO
lesson and a dataset that is stored on a disk. An -attach- with no tag

detaches the current file.

first tag

second tag

third tag

Actual name of the dataset or a variable. If a
variable is used, enclose it in parentheses. The
variable should be at least ten 8-bit bytes long.
It should be filled out to ten bytes with zeros.

Expression that indicates the disk drive on
which the dataset to be attached is located.
The actual numbers that are used can vary
from system to system, depending on how
many drives are defined. See the information
on drive mapping in the Setting Up Your
Configuration section of the user’s guide.

Expression that indicates the access mode of
the file. This tag can be omitted. If it is, the
default mode (shared) is assumed.

The allowable values for the access mode tag are:

-1 Read /write

0 Read-only

This allows the current user to read and
write the file, but all other users will only
be able to read the file.

The user will only be able to read the file.
Others will be able to open it in read /write,
read and shared mode.

2-11

-attach-

1 Shared The user will be able to read and write the
file. Others will be able to open it in shared
and read-only mode.

2 Exclusive The user will be able to read and write the
file. Other users will not be able to open it
in any mode.

Note that if the second tag is omitted, all disk drives are searched for the
specified dataset.

After -attach-, the reserved word *zreturnx equals:

-1 Connection ok.
0 File does not exist on the disk.
1 Disk error.

2 Illegal disk drive number in the second argument of
the command.

3 The file is attached elsewhere in either read /write
or exclusive mode.

4 Illegal access mode value.

On MS-DOS systems, the Micro PLATO datasets have names of the
form filename.dat. In the Micro PLATO language, however, the
.dat is understood and should never be included. Also, again due to
MS-DOS constraints, the dataset name is limited to eight characters, the
first of which must be a letter. The remaining seven characters can be
either letters or numbers.

See also the documentation for -file-, -sysfile-, -datain-.

2-12

-axes-

axes xmax,ymax $$ tags must be in fine grid

axes negx, negy, posx, posy
axes 104,198
axes -28,-58, 188,200

The -axes- command specifies the x,;» boundaries of the graph axes
and draws lines along these axes. All arguments are in fine-grid dots.

If the two-argument form is used, the xmin and ymin boundaries will
be at the origin (@,#).

There cannot be a zero (@) in the tag of a two-argument -axes-
command. If you do not want the line to appear, use 1 for that
argument. If you want to label a positive axis on the inside, use the
four-argument form with & as the value for the 3rd and 4th tags. For
labeling on the inside of a negative graph, have the xmin and/or ymin
equal to @ or a negative number and greater than the xmax and/or
Ymasx.

All origin and boundary information is kept until you alter it with
another -gorigin-, -axes-, or -bounds- command.

2-13

-back-/-backi-

back uniti

back var,unitml,unit@,unitl,errunit
backl uniti

backl var,unitml,unit@,unitl,errunit

See the documentation for -next -.

2-14

-base-

base $% no tag

Only the blank-tag form of the -base- command is allowed at this time
in Micro PLATO.

After completing a help sequence, the user is returned to the base unit.
The system automatically sets the base unit to the main unit in which
the help-type key was pressed. The -base- command is used to change
this default return option.

A -base- command with no tag clears the base unit. In other words,
there will be no automatic sequencing when a help sequence is
completed.

A help sequence is started when a help-type key is pressed.

See also the documentation for -help-.

2-15

-beep-

beep $% no tag

The -beep- command activates the sound-making device.

2-16

-block-

block a3,bcb,12

The -block- command copies consecutive variables from one location
to another location. In this example, the variable a3 and the 11
consecutive variables following it (12 variables total) are copied into kck
and the following variables.

The tags for the -b1ock- command are:

first tag from variable
second tag to variable
third tag length

The number of bits copied depends on the type of variable used for the
from location. In the above example:

- if a3 was defined as an 8-bit integer, 12 8-bit bytes would be copied.
- if a3 was defined as a 16-bit integer, 24 8-bit bytes would be copied.

- if a3 was defined as a 48-bit floating point number, 72 8-bit bytes
would be copied.

2-17

-bounds-

bounds xmax,ymax

bounds xmin,ymin,xmax, ymax
bounds 188,188

bounds -20,-39,188,1548

The -bounds- command establishes positive and negative boundaries
on the x and y axes (relative to the origin) just as the -axes- does, but it
does not draw the axes in.

In Micro PLATO there are no default settings for this command. You
are required to set the values for this command before any of the
graphing commands will work.

Tags for -kounds- are in screen dots. Zero is not a legal tag.

All -bounds-, -gorigin-, and -axes- information is kept until you
alter it with another -bounds-, -gorigin-, or -axes- command.

2-18

-box-

box cornerl;cornera

box cornerl;corner2;thick $%$ optional thickness
box xcorner, ycorner;corner2 $% fine or coarse
box 1256,256 $%$ one corner at screen location

* $$ other at 256,256

box 914 $3 one corner at #,8; other at

* $$ 919

box $$ blank tag draws a box from

* $$ 4,8 to 511,511

The -box- command draws a rectangular box whose opposite corners
are at the two locations given. Corner 1 can be any of the four corners;
corner 2 is the one diagonally opposite corner 1.

Thickness specifies the number of lines or dots thick that you want the
walls of the box to be. If the thickness value is positive, the box wall will
be built up in an outward direction from the corners. If thickness is a
negative value, the buildup is in an inward direction.

Thickness values of -1, @, 1, and blank (that is, none specified) all mean
the same thing: the box wall is to be one line thick.

If the first location is omitted (-box ; 1oc2-), the current display
position is used as one corner. If only one location is specified

(-box 918-), abox is drawn with one corner at the specified location
and the other at location @, g.

The blank-tag form of the -box- command is equivalent to the
following command line.

box #,8;511,511

After execution of -box-, the system defined variables *zwherex* and
kzwherey* are set to the lower left corner of the box for boxes with
positive thickness. For boxes with negative thickness, *zwherex* and
xzwhereyx are set to the lower left corner of the last-drawn interior box.

2-19

-branch-

branch lend
branch express, 99neg, fzero, Ilplus, 2plus
branch var/3,f8gc, 9more,x, 12to, o

The -branch- command is used to branch to different lines of code
within the same unit. You cannot branch between units. A branch can
only be made to a line with a statement label. The statement label is
written in the command field and must start with a digit and be seven or
fewer characters in length (SHIFT, FONT, ACCESS, and punctuation are not
allowed).

For example, if var is negative, Micro PLATO will branch to statement
label 1skip. Otherwise, the code between the -branch- and 1skip
will be executed.

unit one

kbranch wvar,lskip,x
* some code

b3

*

iskip

It is not permissible to use a label more than once in the same unit. This
is because a -branch- (or -doto-) operates only within a unit.

A -branch- command and its tags must be shorter than the maximum
line length allowed in the condensor. See the Condensor Limits section
for more information.

2-20

-buffer-

buffer setup;portnum,variable,length
buffer input;portnum,variable,bytes

The -bu f fer- command is used to manage a circular buffer of data
bytes that have been received from the serial port or from the central
system. After you have set up a buffer, whenever the specified port
receives a data byte it will be automatically stored in the associated
buffer. You can determine how many bytes are currently in a buffer,
and you can transfer bytes from the buffer into other variables.

Some of the features of the -bu f fer- command are:

e It provides a consistent way of handling serial port data and/or
central system -xmit - data.

e There is no artificial limit on the size of the buffer.
¢ You do not need to use the -intrupt - command.

¢ The -buffer- command will handle serial port interrupts even
during -pause- and -arrow- commands.

¢ You do not need to continuously scan the serial port while waiting
for data.

The -buffer setup- command is used to connect a port to a
data buffer. The command syntax is:

buffer setup; portnum, variable, length

setup A literal keyword to indicate that you are
setting up a data buffer.

2-21

-buffer-

pertnum The port to which the connection should be
made. Valid port numbers are:

1 Central system -xmit - data
2 Serial port data

variable The starting variable of the data buffer for the
specified port. If you use local variables for
the buffer, it will disappear when the unit is
exited, and unpredictable things will happen if
an interrupt occurs on the specified port.

length The total length of the data buffer. The
interpreter will store pointers and other
information in the first 8 bytes of the data
buffer, therefore 1ength must be 8 or greater,
and the maximum number of received data
bytes the buffer can hold is (1ength - 8).

Note that the 1ength is in 8-bit bytes, regardless of the type of
the buffer variable.

The -buf fer setup- command will set ¥zreturn* to one of the
following values:

-1 The buffer has been set up successfully
0 The value of 1ength is less than 8
1 The port number is illegal

After a -buffer setup- command has been executed, when an
interrupt occurs from the specified port, the interpreter will read one
(8-bit) data byte from the port and store it in the specified buffer. The
xzbdatax function can be used to find out how many bytes are in a
particular buffer.

2-22

-buffer-

Each buffer created by the -buffer setup- command is managed as a
"first-in, first-out" circular buffer, using pointers and other information
at the beginning of the buffer. To ensure that the pointers and the
buffered data remain correct, the buffer variables should never be
manipulated directly.

To copy data from a buffer into other variables, the -buf fer input-
command is used. The syntax follows:

buffer input; portnum, variable, bytes

input A literal keyword to indicate that you are
reading data from a data buffer

pertnum The port to which the connection should be
made. Valid port numbers are:
1 Central system -xmit - data
2 Serial port data

variable The variable into which the buffered data
bytes will be copied
bytes The number of data bytes to copy from the

buffer into the variable(s). This value is
always in 8-bit bytes.

The -buffer input- command will set xzreturnx to one of the
following values:

-1 The transfer was successful

0 length is greater than *zbdata (portnum) *
(for example, if there are not enough bytes in
the buffer)

1 The port number is illegal

2 No -buffer setup- command has been

executed for the specified portnum

2-23

-buffer-

Notes about the -bu f fer- command

Make sure that there is no data waiting before you do the

-buffer setup;2- by checking the input status word and discarding
all bytes by doing -xin- commands on the port until the status
indicates there are no more bytes. See the description for the -xin-
command and the Micro PLATO Language Serial Channel Input/Output
section for more information.

After setting up a serial port buffer (for example, -bu f fer setup;2-),
you must explicitly enable external interrupts in order to activate the
buffer. External interrupts are enabled by executing an -enable ext-
command and an appropriate -xout - command.

If an interrupt occurs on a port and the system finds that the data buffer
is full, the byte will be read in and discarded. The contents of the data
buffer will not be changed.

If -bu f fer- commands are used instead of a -receive- command, the
central PLATO lesson must not send any -xmit - data before the Micro
PLATO unit executes the -buf fer setup- command. Any data
received before a -buf fer setup- command has been executed would
go into the system receive buffer instead of the specified buffer.

The -xin- and -xout - commands remain unchanged. This allows
programs to send and receive unbuffered input and output to the serial
and parallel channels. However, if you have a port receiving data with
the -buf fer- command, you will not be able to -xin- data from that
same port (because the -buf fer- command will take it first).

It is possible to have separate data buffers for serial data and central
system -xmit - data operating together. The portmnum parameter will
indicate which buffer is referenced.

If a machine has more than one serial port, you will still be able to have
only one serial data buffer. This is due to the fact that the software does
not allow differentiation between the various serial port interrupts.
Therefore, you must have interrupts enabled for only one serial port at
a time.

2-24

-buffer-

Example using the -bu f fer- command
unit buffer

i,8:buff(188)

v (18

count

*
*
b

buffer
*

1f

endi f
%*

enable
%

calc

xout

locp

endloop

erase
doto
buffer
if

Set up a buffer than can held 98 data bytes.
Data will be read from serial channel.
setup;2,buff (1),98

zreturn > -1

at 3918

write buffer setup error {s,zreturn).
branch 1stop

ext $$ enable external inputs
$$ AFTER the -buffer setup-

v (1) < oflé $3 enable character ready

v(2) « o@26 $$ 1200 baud

v(3) ¢ of42 $$ 7 data bits

v(4) <« o863 $$ even parity

v(5) « o183 $$ modem control "ON"

3, W) 4 5 3 send contrel bytes

wait for data to come from serial channel
zbdata (2) < 94

at 1119

erase 44

write zbdata (2) = {s,zbdata (2)).

pause .5

read and display 18 bytes at a time.

Ishow,count « 4,8
input;2,v(1),18
zreturn > -1

at 3819

2-25

-buffer-

write input error {s,zreturnd.
. branch Istop
endi f
at 1418 + (188 * count)

write €, vy(1))» €s5,v(2)) Ls5,v()D Is5,v (4>
write {s,v(5)> L5, v(B)> s5,v(7)> Ls,v(8))
write {s,v()> Ls,v(1ADD>

1show

%*

I1steop

See also the Micro PLATO Language Serial Channel Input/Output section,
and the documentation for the -enable-, -xout -, and -xin-
commands.

2-26

-calc-

calc % ¢ alpha+ketar3
calc v & 5
v ¢ vt

The -calc- command is used to perform calculations and to set
variables to values. The -calc- command can be continued to other
lines, with one expression per line.
The following items can be components of -calc- expressions:

e All user-defined variables

* Special symbols: ° (degrees), v (pi), « (base of natural logs)

* Operators: «,+,-, %, +,%,/,¢,5,%,%,=,

* Bit operators: $mask$, $union$, $di f {$, cls, Farss

* Logical operators: and, or

* Parenthetical symbols: (), [1, {}

e Strings: x (the character code for the letter x)

e System-defined functions: int (a/k), frac (a-k), and so
forth

¢ abs(asb), comp(x), zvlec(x)

* zk (keyname) — see kzkeyx

2-27

-calc-

The following functions can be used only in the -calc- commands, the
-show- commands, the -comput e- command, and the -ansv-
command:

* sin(x) (xinradians)

* sin(x°) (xindegrees)

* cos(x) (xinradians)

* cos(x®) (xindegrees)

®* arctan(x) results in radians
o log (%)

* alog(x)

* exp(x) (equivalent to eX)

* In((equivalent to log.x)

e xx (axxb is equivalent to ab)

Range of values

The range of values a floating point variable can be assigned via a
-calc- type operation is 1.7x10-308 to 1.7x10308, Underflow values are
set to 0, and overflow values generate an execution error. The range of
values an 8-bit integer variable can be assigned is -128 to 127. A 16-bit
integer can be assigned values from -32768 to 32767.

2-28

-calc-

Notes on -calc-

Always be aware of the size of Micro PLATO variables with which you
are working. The difference between 8-bit and 16-bit integer variables
is important. Be very careful not to overflow the capacity of these
variables.

All integer arithmetic is 16-bit, regardless of where the operand came
from or is going to. This means that an operation such as $cls%
performed on an 8-bit variable will give unexpected results.

Special care must be taken if the result of a Micro PLATO expression
could be a floating point number. If there are no floating point variables
or constants in the expression, the expression will be evaluated in
integer mode. For example, both of the following sets of code will be
evaluated as -pause 1-:

calc 1 « 84
pause 8@ 188 calc] « 188
pause 1/]

If these -pause- commands are to be evaluated as -pause . 8-, the
expressions must contain a floating point variable or constant. For
example, both of the following sets of code will be evaluated as
-pause .8-:

calc 1 « 8@
pause 8g./1084. calc] « 184
pause 1/]+4. 8

If an integer variable is assigned the result of an integer divided by an
integer, rounding will occur. If an integer variable is assigned the result
of the x int * function of an integer divided by an integer, truncation
will occur. Following is an example.

2-29

-calc-

define 1i,16: %x,y,z

unit calc

calc x ¢« 1871

calec v & x/188 $F vy = 11
calc z ¢ int (x/188) $B z = 14

Notes on Micro PLATO expressions

An o prefix indicates an octal constant. For example:

calc woof « o77
at 1918
write woof = ds,woofd.

will display "woof = 63."
An h prefix indicates a hexadecimal constant. For example:

calc woof ¢« hfa
at 1818
write woof = ds,woofd.

will display "woof = 14."
There are no operators for manipulating whole arrays.

The double quote marks are used to place a character in the lower 8 bits
of a variable: -calc lettr ¢ "z"-. Only one letter can be enclosed
in quotes at a time.

Because of round-off within the computer, 3.(10./3.) is not exactly 10,
and without some intelligence on the part of the computer, the
expression [3.(10./3.)=10.] would be false.

Therefore the expression a = b is considered to be true (-1) if
abs (a-b) < 2-26.

2-30

-calc-

Note that this causes all numbers less than 2-26 to be considered equal as
far as the =, #, <, >, <, and 2 operators are concerned. To make a detailed
test on small numbers, use 2-26(a) = 2-26(b) instead of a = b.

Exponentiation of negative numbers is legal if the power that the
number is raised to is an integer:

calc test & (-1) %%2 $% this is legzal
calc test ¢ (-1)%%.5 $3 this is NOT lezal

Arithmetic operators

The arithmetic operators that are used in Micro PLATO are:

Assignment <« The assignment operator assigns a given value
to a variable. Assignment can occur any place
an expression can. For example:

calc X & 5 $F set x to 5
calc aliel) €« 1 $%B set a(l) to 1
$F and 1 to 1
Addition + Simply adds two values. For example:
calc X EY + Z
Subtraction - Subtracts one value from another. For
example:
calc X ¢« b -c
Multiplication X, * Multiplies one value times another. For
example, the following two statements are
identical:
calc K&y x z
calc X &y ¥z
Division +, / Divides one value by another. For example:

2-31

-calc-

cale X €Yy 5z
cale X &Y /z
Exponentiation Puts one number to the power of another. For
example:
X & Z2%x15

Exponentiation evaluates from right to left
instead of left to right.

Precedence

The various mathematical operations can be grouped into different
classes. According to the priority they have in evaluation, certain parts
of an expression will be evaluated before others. The following table
indicates the priority of the operators, from highest to lowest.

1 functions — system and author defined
2 arithmetic operators:

* K
* (or x)
s (or +)
+ and -

3 bit operators: cls ars $mask$ Suniond Bdiff$
4 logical operators: > = < < = =

5 logical combination: and or
6

assignment: <

If more than one of these occur in a single expression, they are done in
the order listed above.

Note that the order of operations within a group is NOT always left to
right. Use parentheses to make your expressions clear.

2-32

-calc-

Logical Operators

Logical comparisons and decisions are made by using the logical
operators:

< less than

> greater than

1A

less than or equal to (ACCESS <)

Iy

greater than or equal to (ACCESS >)
= equalto

= notequal to (ACCESS =)

When PLATO evaluates an expression that contains logical operators,
that expression is given one of two values:

=1 means the expression is true
0 means the expression is false

To insure an unambiguous expression, always enclose the logical
expression in parentheses:

calc value ¢« 47 + (height = 55)

When using floating-point arithmetic, introduction of round-off errors is
inevitable. For that reason, comparisons of very small floating-point
numbers and nearly equal numbers are handled by using epsilon
values. Numbers that are within the epsilon value of each other are
treated as equal. Numbers with an absolute value between 0 and 1 are
evaluated against the base epsilon value of 2-8. For numbers with an

absolute value >1, the epsilon value depends on the magnitude of the
number.

2-33

-calc-

Examples of Logical Operators

Expression Value of Logical Numerical
variable value value
(height=64) heightis 60 true -1
height is not 60 false 0
(wrengs>2) wrongs is greater true -1
than 2
wrongs is 2 false 0
or smaller
(radius=254) radiusis 254 true -1
or smaller
radius is greater false 0
than 254

Combining Logical Expressions

Different logical expressions can be combined, logically, with the $ands
and or operations. Consider these two logical expressions:

score<’ ("score" is less than %)

wrongsz2 ("wrongs" is greater than or equal to 2)

Value of Component Expressions Value of Entire Expression
(score<s) (wrongsz2) (score<5) $and? (wrongsz2)
true true true
true false false
false true false
false false false

2-34

-calc-

(score<s) (Wwrongsz=2) (score<5) or (Wrongsz2)
true true true
true false true
false true true
false false false

The and combination is true only if both component expressions are
true, whereas the or combination is false only if both component
expressions are false.

Bit operations
Bit operations in Micro PLATO make sense only when used with 16-bit

integer variables. Performing bit operations on 8-bit integers or on
floating point values gives unreliable or meaningless results.

The bit operations are:

cls circular left shift

ars arithmetic right shift (with sign extension)
$mask$ logical intersection

Sunion$ logical union

$di f{$ logical difference

2-35

-calc-

Circular Left Shift ($c1s%)

The $c1s%$ operation is a true circular left shift. That is, the contents of
the indicated variable are shifted left and the left-most bits are wrapped

around to the right portion of the variable in a circular fashion. If 12ae
hex is stored in the 16-bit integer variable r, the 16 bits of r are:

pE@l @1 1819 11148
After execution of the following commands

calc s¢r cls 3
xcircular left shift of 3 bits

the 16 bits of s are set to:

1481 A1/1 Bg111 ggg4
+ shift left 3 bits

In hexadecimal notation, the value of s is 9570 hex. A circular left shift
greater than 16 is treated as the stated shift minus 16 (for example,

r cls 20 isequivalenttor cls 4). A negative shift is treated as
no shift at all (for example, r cls -3 isthesameasr cls #).

Note that $c1s% is executed on 16 bits even when an 8-bit variable is
used.

Arithmetic Right Shift (ars)

The arithmetic right shift operation (ars) shifts the contents of a word
to the right. The right-most shifted bits "fall off" the end of the word,
and the sign bit (the left-most bit) is extended to the left to retain the
sign (+ or -) of the integer. If 12ae hex is stored in the 16-bit

integer variable r, the 16 bits of r are:

apg1 ge1e 1919 1118

2-36

-calc-
After execution of the following commands

calc s ¢ r ars 3
*arithmetic right shift of 3 bits

the 16 bits of s are set to:

AP g1l g1l g1g1
+ shift right 3 bits

The value of s is 0255 hex.

The last 3 bits (110) are shifted off the right end as a result of
r ars 3. These bits cannot be recovered.

Recall that the sign bit is the left-most bit of a word. For positive
integers, the sign bit is 0; for negative integers, itis 1. A negative integer
is represented by the two’s complement of the corresponding positive
integer (one’s complement plus 1).

Right Shifting Negative Numbers

If r is 12ae hex, then -r is ed52 hex. The example now shows the effect
of arithmetic right shift on a negative number.

1119 1181 @181 gE1A
After execution of the following commands

calc s ¢ (-r) $arss 3
*arithmetic right shift of 3 bits

the 16 bits of s are set to:

1111 11§81 19819 1918
+ shift right 3 bits

2-37

-calc-
The value of s is fdaa hex.

As the sign bit (left-most) is shifted right, it is extended into the empty
bits at the left end of the word.

Mask ($mask$), Union ($union$), Diff (8di f £$)

The $mask$ operation is an intersection of bit patterns (commonly
known as and).

x $mask$ produces a "1" only where BOTH
x and v have "1" set,

The $union$ operation is a union of bit patterns (commonly known
as or).

®x Funion$ y produces a "1" where EITHER
x or v have "1" set.

The $di f f$ operation determines where the bit patterns are different
(commonly known as xor).

x Bdiffs ¢ produces a "1" only where
x and v DIFFER

For example:

6a7b hex
e65¢c hex

g11g 1918 #111 1811
1119 #1198 Bg1g1 1148

X
1]

.o
1

x $mask® v = G119 FH1H F181 10FF = 6258 hex
x $uniond v = 1118 1118 F111 1111 = ee7f hex
x $diff$ v = 100F 1180 AF1E F111 = 8c27 hex

2-38

-calcc-

calcc scoreZ x wrongs,
wrongs<fd, ,scoresscore+s,
wrongsewrongs+ 1, , wrongsewrongs+ 3

The -calcc- command makes one of several assignments. The first
argument determines which assignment will be performed. Each
argument of the -calcc- can assign a different variable. (The -calcs-
makes one of several assignments to the same variable.)

Value of
expression Calculation
(score-2*yrongs) done

negat ive wrongs<y
g none performed
1 scoresscore+5s
2 wrongs«wrongs+ 1
3 none per formed

4 & larger wrongsewrongs+ 3

Two consecutive commas in a -calcc- indicate no assignment is to be
done.

The -calce- can have a maximum of 61 arguments.

2-39

-calcs-

calcs prebtyp, result¢a-b,axb,a+b,a+b, ,b

The -calcs- command makes one of several assignments to a variable.
The first argument determines which assignment will be performed.
The second argument specifies which variable will be assigned.

As with all conditional commands in Micro PLATO, the index
expression (probtyp in the example) is evaluated and rounded to the
nearest integer. Depending on the value of the expression, one of the
listed assignments will be made to the variable specified (result in the
example).

Value of Value assigned
probtyp to result
negative result«a-b

0 result<axb

1 result<a+b

2 result<a+b

3 No change to result

4 & larger result<b

Two consecutive commas in a -calecs- indicate that no assignment is
to be done.

The -calcs- can have a maximum of 61 arguments.

2-40

-ccode-

ccode int,params (1) %% interrupt number,
* parameter buffer
ccode h21l,params (1) 3 DOS interrupt

The -ccode- command allows calls to OS interrupts.
The interrupt number should be defined as follows:

define 1,16: int

The interrupt number can be any valid DOS interrupt number
greater than 1 and less than 256. Nonstandard interrupt numbers
should be avoided. '

When the -ccode- command is executed, the specified interrupt
routine will be executed. For example, a value of hex 21 (h21 or 33
decimal) is a DOS function call.

The parameter buffer should be defined as follows:

define 1,8: params(14)

When any DOS function call is requested, the parameter buffer must
contain the 8086 register values that will be set before the interrupt
occurs. After the interrupt, the parameter buffer will be updated to
the register values returned from the interrupt routine.

2-41

-ccode-

The format of the parameter buffer corresponds to 8086 registers in the
following way:

parameter(1) = al

parameter(2) = ah

parameter(3) = bl

parameter(4) = bh
parameter(5) = cl

parameter(6) = ch
parameter(7) =dl

parameter(8) = dh

parameter(9) = si low byte
parameter(10) = si high byte
parameter(11) = di low byte
parameter(12) = di high byte
parameter(13) = flags low byte, bit 0 = carry flag
parameter(14) = flags high byte

2-42

-char-

char 12 3 alternate font slot 12
oPP3768, 08082828, 0082828, 0882824
oPP2@zZE, cfA2H2A , cHB376H, cHAHHAA

char -12 $$ standard font, comma
oP@3760, 0082820, cB2@28, clF2H2M
ocfg2Aze, ol 2828, 003768, CHAHHAH

char expr,a,b,c,d,e, f,g,h

char expr,col (1)

The -char- command is used to specify the design of a character in the
standard and alternate font character sets. It provides a way to modify
the design of a character under lesson control. In most cases, -char-
and -charset - are not both used in the same lesson.

The first tag specifies which slot of the character set will be loaded. If
the value specified is between 0 and 126, the slot in the alternate font
character set will be loaded. If the value is between 1 and -255, the slot
in the standard character set will be loaded. Note that slots 63 and 127
are reserved for the system and cannot be defined by the -char-
command. Attempting to assign these slots will result in an execution
error. Note also that character slot 0 is zero in the alternate font, not in
the standard font. You cannot change the standard font slot 0.

The remaining tags of the -char- command describe the character dot
by dot. In the two-tag form, the variable listed in the second tag is the
first of eight consecutive 16-bit variables that describe the character. In
the nine-tag form, the eight values are listed following the character slot
number.

In the character description, each number represents one vertical
column of the character, reading from left to right. Each column is read
from top to bottom. Expressed in binary, every dot is given a 1 for on
and O for off. The numbers can range from o0 to 0177777. An out-of-
bounds value causes the -char- to be ignored.

A -charlim- command should be used in conjunction with the -char-
command to specify the number of character positions that must be

2-43

-char-

reserved. The -char- command does not reference the -charl im-
value when accessing a slot in the standard character set.

During lesson initialization, the standard character set will be loaded.
This means that the standard character set will be reloaded upon
-jumpout - to a new lesson.

The following table shows the standard PLATO character set and each
character’s slot number. Note that this table uses hexidecimal slot
numbers. For example, slot 2D (decimal 43) is the uppercase M.

0 2 3 4 5 6 7 8 9
0 |SP ¥ e P) P e (@) &
1 ! 1 A Q a g / = 0
2 " 2 B R b r = & o ==
3 #* 3 C S < - A °
4 $ 4 D T d & I + FE
5 % 5 E U e u T %
6 & 6 F v f v + P ’ a
7 ' 7 G W g w -+ a .
8 (8 H P h ® + w v
9) 9 I Y 1 Y + < $
A % J z j z x E2 I
B + : K [k { z e a
c |, < L o~ 1 I a ¢« A
D - = M] m 3 v °]
E > N - n ~ n)3 Q
F|., 2 o _ oo B = > ®

2-44

-charlim-

Non-executable command

charlim 23 $$ reserves space for slots #-23
charlim 127 $$ maximum size for -charlim-
charlim & $$ reserves space for 1 character

The -charl im- command is used to reserve terminal memory space

for characters that will be loaded with a -char- or -charset -
command. The tag of the -char1im- command specifies the largest
slot number of the characters that need to be used. Note that

-charl im- refers to the maximum character slot number, and not to the
number of characters. Therefore, if you want to load only one character
and have it stored in slot number 113, you must specify -charlim

113-.

The -charlim- is a condense-time command. The number in the tag
must be an explicit value; it cannot be a variable. Also, if more than
one -charl im- command is included in the lesson, the last occurrence
of the command sets the amount of memory that is reserved.

Since the loadable character memory uses up part of the space
otherwise available for a program, -char1 im- should be set to the
lowest reasonable value.

2-45

-charset-

charset lesson,block
charset (var!), (var2) $%$ variables in parentheses
charset ,blockname

The -charset - command loads a character set from disk. Both the
lesson name and block name must be stated. However, only the charset
block name is used. Character sets are stored in DOS files with the block
name as the first eight characters and the extension .chr. For

example, dem is stored on the disk as dem.chr.

A character set is created with the character set editor.

To type an alternate font character at an arrow, press the FONT key and
then the associated letter.

Loading a character set uses up part of the memory that is usually
available for the Micro PLATO program. This memory must be
reserved with a -charl im- command. The amount of memory used by
the character set depends on the slot number of the highest character in
the charset (for example, a uses only one slot, but A uses 64 slots even if
A is the only character loaded).

After a -charset -, the possible values of *zreturn« are:

-1 Load ok

0 Charset not found

1 Disk read error

2 Access violation on the file (another user

has it open in exclusive or read /write mode)

Note that when a charset is loaded into the terminal from disk, every
charset slot from 0 to the value given by -char1 im- is overwritten.
Thus, even if characters a-z and A-Z are defined in char=set 1 and
characters 0-1 are defined in charset 2, both character sets cannot be
active at the same time.

2-46

-circle-

circle radius $% wheole circle
circle radius,al,a2 $$ arc from al to az

The -circle- command draws a circle or arc and the -circleb-
command draws a broken (dashed) circle or arc with its center at the
current screen position, *zwherex#, *zwherey* (perhaps set by a
previous -at - or -atrm-).

The variables *zwherex* and *zwherey* remain at the center for the
whole circle form and are reset to the last point drawn on the
circumference for the arc form.

The tag of a -circle- command has one argument for a complete or
dashed circle and three arguments for a partial circle (an arc). A comma
separates all tags.

The first argument must always be the radius of the circle specified in
fine-grid dots.

The second and third arguments (optional) specify the beginning and
ending angles for arcs. They are expressed in degrees (no degree sign),
either as integers or floating point numbers. These angles are always
measured counterclockwise from the positive x axis.

Circles and arcs of large radius (i.e., >10,000 pixels) may not plot
correctly on all video displays.

2-47

-circleb-

circleb radius
circleb radius,anglel,angle?

A broken circle is just a regular circle, but drawn with dashed lines. The
commands have the same form with the exception of the b after circle,
which indicates that the circle is broken.

See the documentation for the -circle- command for an explanation
of the tags.

2-48

-clrkey-
clrkey $$ no tags.

The -clrkey- and -getkey- commands are used to examine and
manipulate the key buffer that contains up to twelve keys either pressed
by the user or pressed with the -press- command. If more than twelve
keys are entered by the user, the buffer will hold the first twelve keys
pressed. If an additional key is typed, it is not stored in the key buffer.
Any additional key -press-ed with the -press- command will
replace the key in the 12th position of the key buffer.

The -clrkey- command zeroes the entire key buffer.

These commands are useful for collecting keys pressed while lengthy
-loop-s or -calc-s are being executed.

Suppose a user types a < b while a lengthy calculation is being
executed. The xzkeyx* values of these keys would be stored in a buffer.
When the calculation is complete, the pressed keys could be retrieved
with the following - loop-.

locp

cale inc¢inc+1
. getkey
cutlocp zkey=-1 %% get cut if no keys ready.
: calc key (inc) ¢zkey $3 store key
endloop

In the above example, the following assignments would have been
made:

key (1) «65
key (2) «13
key (3) «66

See also the documentation for -getkey -.

2-49

-color-

celer display;zyel low,zblue

color display;zwhite $%$ change foreground only
color display;,zblack $% change background only
color define;newfg, .2,.8,.2

color palette; fgpal,bgpal

color palette;mainpal

color replace;palno, newfg

The -color- command works only with displays that support color.
The IBM PC with the color graphics display adapter and the CDC PPTS
with the standard display adapter work only in monochrome—the
-color- commands will have no effect. In addition, some of the
-celor- commands work only on displays that have a programmable
palette.

Palettes

Some display adapters can display only a fixed set of colors. For
example, in high-resolution mode the IBM PC color graphics adapter
can display only two colors, black and white, which cannot be changed.
Displays like this are called fixed-palette displays.

Other display adapters, such as the one found in the PPTS Professional
workstation, can display a fixed number of colors at one time, but the
programmer can choose the particular colors that are on the screen from
a larger set of colors. Displays such as this are called programmable-
palette displays, or palette-based displays. The reserved word
xzpalettex will be true (-1) on displays that have a programmable
palette and false (0) on displays that have a fixed palette.

The PPTS Professional workstation’s display adapter is capable of
displaying 16 different colors at one time, out of a total possible 4096
colors.

2-50

-color-

The -color display- command

The display keyword specifies the colors in which text or graphics will
be plotted in the current logical screen (see the -screen- command for
information on logical screens).

color display;zyel low,zblue
celor display;zwhite 3 change foreground only
celor display;,zblack $% change bkackground only

The first tag specifies the foreground color. This change takes effect
immediately; the next object plotted in mode write or rewrite will be in
this color. This command sets the system reserved word *z fcolor* to
the color specified by the first tag, and on displays with a color palette,
the reserved word *z fpalettex to the palette number associated with
that color. In modes write and rewrite the on dots of a character or line
drawing are plotted in the foreground color. In mode inverse the off
dots of a character are plotted in the foreground color.

The second tag specifies the background color. This sets the system
reserved word *zbcolors* to the color specified, and, on palette-based
displays, sets #zbpalette* to the palette number of that color. In
mode rewrite the off dots of a character are plotted in the background
color. In mode inverse and erase the on dots are plotted in the
background color. For graphic objects (boxes, lines, etc.) the on dots are
plotted in the background color.

Changing the background color with -color display- will not
change the current color of the display. The next time the screen is
erased, explicitly with an -erase- command, or implicitly via a

- jumpout - Or - jump- command, the entire display will be cleared to
the current background color. If you want to actually change a color
that is already on the screen to another color (e.g., changing all the red to
green at once without replotting the display) you can use the -color
replace- command.

2-51

-color-

Either tag is optional; however, at least one tag must be present.
Each tag can be either a system-defined color variable, such as *zk luex,
or a user-defined color variable set by the -color define- command.

The following reserved words define the eight basic colors recognized
by -color display-: zblack, zwhite, zred, zgreen, zblue,

zyel low, zcyan, and zmagent or zmagenta (both spellings are
acceptable).

Additionally, either tag can be -1, to indicate the transparent color. The
transparent color is used with logical screens to allow lower logical
screens to "show through.” See the description of the -screen setup-
command for more information on logical screens.

After execution, *zreturn# can be:

-1 If the tags are valid

1 if one or both of the tag values was out of range
2 Too many colors have been put into the palette
3 Transparent color not allowed. No logical

screens defined.

The palette and -color display-

Whenever a -color display- command is executed on a
programmable-palette display, the palette is searched. If the colors
specified in the tags are already present in the palette, those palette
entries are chosen. If the colors are not present, they are added to the
palette. If there are no free entries in the palette, *zreturnx is set to 2.
This information is important if you are using the -color replace-
and -color palette- commands to select your colors.

2-52

-color-

Embedded -color display-

The following embedded forms of -celor display- exist:
{ecolor, fgnd) $3 change foreground color
{color, fend,bgnd) $$ change fgnd and kgnd
{color, ,bgnd) $% change background coleor

color can be abbreviated to <:

{c,zwhite,zblue)

The embedded form performs the same function as -color display-:

color display;zyellow,zblack
mode rewrite $$ make sure background
is changed
atnm 2845
write Touch the {c,zredPRED {c,zyel lowbbox!

In this example, the word RED is displayed in red, while the rest of the
text is displayed in yellow. Color changes made in the text of a
-write- command remain in effect after the ~write-.

The ~color define- command

color define; (var) ,redval,greenval ,blueval
color define; (red) ,1,8,8
color define; (orange) ,1,.5,8

The define keyword of the -color- command allows you to define
your own colors.

2-53

-color-

The first tag following the semicolon must be a floating point variable.
This is the variable that will receive the color definition. It can be used
with subsequent -color display-, -color complement - and
-color replace- commands.

The second, third, and fourth tags specify the desired intensities of red,
green, and blue in the color. The intensity value can be a constant or
a variable, and it must be in the range 0 to 1, inclusive.

Care should be taken when defining colors for use on displays with
limited color capabilities if you wish your lessons to be portable.

After execution, *zreturn# = -1 if the color is valid or 0 if one of the
color intensities was out of range.

See also the documentation for the color keywords *z fcolors and
¥zbcolor.

The -color palette- command

color palette; fgpal,bgpal
color palette; runwayp $$ foreground
color palette; ,textpal $3 background

The -color palette- command is similar to the -color display-
command. It is used to set the foreground and background colors to the
colors indicated by the palette numbers specified in the tags. (Note that
this command is not available on fixed-palette displays.)

On a programmable-palette display, each color on the screen has a
palette number associated with it. A palette number is an integer
whose value is obtained from the palette reserved words, *z fpalettex
and xzbpalettex.

The first tag after the palette keyword is the foreground palette number.
The second tag is the background palette number. You should never

2-54

-color-

use a constant for a palette number; you should always get the palette
number from the #z fpalette* or *zbpalette* reserved words after
performing the -color display- command that introduced the color
into the display. For example,

color display;zred,zblue

calc redp ¢ zfpalette $$ remember the
bluep ¢ zbpalette $% palette numbers

x

* Intervening code.

*

color palette;redp,bluep $3 reselect colors

The reason for this is that palette numbers are not constant: the palette
number for red may be different each time you use the color red.

Either the foreground or the background palette number can be omitted,
but at least one must be present. The omitted color is not changed.

The -color palette- command sets the ¥z fpalettex,
zbpalettex, ¥z fcolor and *zbcolor* reserved words to the
appropriate values. *zreturnx is set accordingly:

-1 The command was successful
0 Thedisplay has a fixed palette
1 Invalid palette number

After the screen is erased (by an -erase- command, or a - jump-
command, or a -screen setup- command) all palette numbers are
invalidated: the palette is completely cleared out except for the
foreground and background. To get the correct palette numbers back,
you must remember the values of xz fpalettex and *zbpalettex for
each color that you define with -color display-. After a -screen
setup- command all palette entries are invalidated except for the initial
screen color.

The -color palette- command is most useful for selecting colors
that you have modified directly in the palette with the
-color replace- command.

2-55

-color-

The -color replace- command

color replace;palnum, color

The -color replace- command is used to change the definition of a
color in the palette. This will cause all objects on the screen painted with
that color palette entry to instantly become the new color. This is useful
for making objects "appear instantaneously," or for cycling an object
through a series of colors to perform an animation.

The first tag after replace is the number of the palette entry to be
replaced. Only numbers that have been obtained from #z fpalette* or
*zbpalettex should be used.

The second tag is the new color. It can be either a floating point value
defined with the -color define- command, or a color reserved word
(such as *zbluex).

Aftera -color replace- *zreturn* will be set to one of the
following values:

-1 Color replaced successfully

0 Fixed-palette display

1 Palette number undefined or out of range
2 Can'treplace transparent color

If you replace the current foreground or background color, the values of
¥z fcolor* and *zbcolorx will change accordingly.

The following is an example of making something appear
"instantaneously" by plotting it with one palette and then doing a
-color palette- to cause the text to appear.

unit test
1,16:textpal, fgpal ,bgpal

erase

color display;zwhite,zblack

2-56

-color-

fepal « zfpalette
bgpal ¢ zbpalette

Get a color palette number. We
choose red because we know it isn't
in the palette already, in effect
reserving a palette entry for ocur
use.

display;zred
textpal ¢ zfpalette

Change the color so that it is black
when we plot it.

replace;textpal,zblack

palette; fgpal

385

While you are reading this, more text
is being plotted in the space below.
Press NEXT now.

Write the text in the color that is
"hidden. "

palette;textpal

785

This was originally in black, now it
has been made white.

keys=next

Make the text appear.

replace;textpal ,zwhite

2-57

-color-

The -color complement - command

The -color complement - command is used to specify pairs of
complementary colors. Complementary colors cannot be specified on
fixed-palette displays. However, you can still use mode complement on
them: fixed-palette displays have a fixed set of complementary colors.

The first tag after the complement keyword is one member of the pair
of complementary colors. The second tag is the other member of the
pair. The colors specified cannot already reside in the palette (i.e., you
can’t specify the same color to be the complement of two different
colors, except as noted below).

-Celor complement - commands must appear immediately after a
-screen setup- Or -erase- command and before any other
commands that draw on the screen or set colors in the palette (for
example, -draw- and -color display-). Commands such as -calc-
are allowed, as is -color replace-.

The values of ¥zreturnx after a -color complement - command are:

-1 Complements set without error

0 Thedisplay has a fixed palette

1 The complement pair could not be added to the
palette. This is due to one of the colors already
having a complement in the palette or the palette
being full.

The on dots of objects plotted in mode complement will be in the
complementary color of the dots that they overwrite. (The on dots are
xored [exclusive-or] with the dots on the screen.)

Mode complement is useful for plotting objects such as cursors because
if you plot something twice in that mode the screen is returned to its
original state.

2-58

-color-

If no -color complement - commands are specified, an arbitrary
decision is made on what the complements of the colors will be. Thus, a
completely different set of complements may be in effect if you don’t
specify the complements after a screen erase. No guarantee is made on
the pairing of the complements if you don’t set them yourself.

It is guaranteed, however, that the foreground and background colors
will be complementary after a screen erase on a display with a
programmable palette.

It is possible to have the same color on the screen have more than one
complementary color, but you must set up the palette first with -color
replace-. The following code will make blue the complement of both
red and yellow:

color display;zwhite,zblack
erase

celor complement ;zred, zblue
coler complement ;zyel low, zgreen
color display;zgreen

color replace;zfpalette,zblue
color display;zred

£l 4,8;256,511

coloer display;zyel low

fill 256,511;511,8
mode comp l ement

at 1918

size bold

write This is in comple-
ment 1n mode bold

(Checks on #zreturn* have been omitted for clarity.)

2-59

-compute-

compute result,buffer,length

The -comput e- command takes a number entered as a character string
and changes it into a number that can be manipulated. Arithmetic
expressions, such as 343-8, can be entered. The following functions are
recognized: sin(x), cos(x), log(x), alog(x), exp(x), and In(x).

The following symbols are also recognized:
Tr, € and °

The first tag specifies where the calculated value of the string is to be
stored.

The second tag specifies the location of the string of characters to be
evaluated, and the third tag gives the length of the string. The
maximum length of the string is 128 characters.

The -comput e- command handles superscripted and double asterisk
forms of exponentiation: 23, 4.21.2+4, (243)G-1), 5% %2, 1.2%%3.4,
2%3)%%(3/2).

2-60

-compute-

After a -compute-, the reserved word *zreturnx is

ot

NG WN =

9

10
11
12

ok

a -specs noops- is in effect, and the string
contains an operation

illegal character

decimal point error

expression too long

unrecognized operator

error in form

unbalanced parentheses
unrecognized function name
missing parentheses around
function argument

illegal value of function argument
divide by zero error

floating point overflow error
floating point system error

Here are examples that produce the above *zreturn* values:

7
8
9

10
11

1+tan (45°) : No such function "t an"
2xsin 2w:Should be "2¢sin (2m) "
1/1n(-1) : The argument of 1n must be
greater than zero

1,9: Undefined value

2x19388: Value greater than 1. 7x1g388

2-61

-compute-

This routine allows the user to enter two values. The sum of the values
is then displayed.

define f,48: a,b
1,8: buff (18
unit compute
arrow 1818;buff (1), 18
i specs nocps
ok
s compute a,buff (1) ,zjcount $$ store 1st #
. do zreturn, x, error
endarrow
arrow 1218;buff(1),19
. specs noops

ok
compute b,buff (1) ,zjcount $3 store 2nd #
do zreturn, x, error

endarrow

at 1512

write The sum of {t,a) and {t,b)» is {t,a+b).

* %

unit error

judge no

at 2918

writec zreturnislNo operations are allowed.$
There is an illegal character.#
There is a decimal peint problem.$
The expression is too longz.$
There is an unrecognized coperator.#
There is an error in form.#
There are urbalanced parentheses.$
A function name 1s unrecognized.$
There are missing parentheses arcund the
function argument.$
A function argument value i1s i1llegal.$
There is a divide by zero error.$
There is a fleating peint overflow error.#
There is a fleating point system error.##

2-62

-Copy-

arrow 318;resp (1) ,38
copy copybuf (1) , 38

The -copy- command activates the COPY key. The first argument
specifies the starting variable of a copy buffer, and the second argument
specifies the length of the buffer (number of characters). In the example
above, the first variable in the copy buffer is copybu f (1) , and the copy
buffer is 30 characters long.

Alphanumeric information stored in the copy buffer is accessible at an
arrow by pressing the COPY key. Each press of the COPY key retrieves
one word of information from the buffer and displays it at the arrow as
though the student had typed the information (a word is an alpha-
numeric string bounded by Micro PLATO punctuation). The SHIFT-
Cory key retrieves and displays the entire buffer.

The -copy- command will stop when a 0-byte is found in the copy
buffer or when the copy length is reached.

The -copy- command modifies actions that are performed only at an
arrow and consequently has no effect if it occurs anywhere in a Micro
PLATO lesson other than following an -arrow- command.

2-63

=-Copy-

A -copy- command can be introduced or modified anywhere in the
arrow structure. In the following example, the COPY key is not active
after a response of cat, but it is active after any other incorrect response.

arrow 31@;resp (1) ,38
zero copyvbuf (1), 38

answer dog
at
write
wrong cat
at
write
no
copy
block
endarrow

2-64

519
great !

518
No, try again.

copybuf (1) , 38
resp (1) ,copyvbuf (1) , 38

-cstart-

Non-executable command

cstart $% There are no tags for these commands
cstop

cstop*

cstop

k kK Statements after -cstop- are not
condensed.

cstart (Say: "cee-stop" and "cee-start")
X k%

Statements following a -cstop- and preceding a -cstart - are not
condensed (-use- commands are ignored also). A -cstart- will
resume the condensing process. A -cstop*- will halt further
condensing. Commands following a -cst op*- will not be condensed.
A -cstart - has no effect if it follows a -cst op*- command.

The ¢ part of -cstop- stands for condense; that is, start or stop
condensing. There is an implied -cstart - at the beginning of each
lesson. Condensing stops at the end of the lesson.

The block-partial flag is the overriding flag. If a block is partialed out, it
will not be condensed even if a -cstart - is embedded within that
block.

2-65

-cstop-

cstop $$ There are no tags for this command

The -cst op- command stops condensing until a -cstart - command -
is found.

See the documentation for the -cstart - command for more
information.

2-66

-cstopx-

cstopx $% There are no tags for this command

The -cstop*- command stops all condensing, as though the end of the
file has been reached.

See the documentation for -cstart -.

2-67

-darrow-

Non-executable command

darrow buff(1),len

The -darrow- command sets up a default buffer and length for all
-arrow- commands that (physically) follow it in the source code.

This code: Is equivalent to:

darrow buff(l),18 arrow 1818;buff(1),18
arrow 19018

The buffer specified in the -darrow- command should not be a local
variable.

2-68

-data-/-datal-

data aidone
data var-2,exptl,x,expt2

datal aidone
datal var-2,exptl, x,expt2

See the documentation for the -help- command for information.

2-69

-datain-/-dataout-

define 1,8: alpha(128)
i,16: list (64)
f,48: flt(22)

attach myset

datain rnum,alpha(1),1

datacut rnum,varble,recs

The -datain- command transfers data from a Micro PLATO dataset
(which is stored on the disk) into Micro PLATO variables. The first tag
tells with which record the transfer should start. The second is the first
variable of an array into which the data will be moved. The third tag
tells the number of records to transfer.

The -dat acut - command takes data from the named variable and
transfers it into the dataset.

Each record contains 128 8-bit bytes. The record is the smallest piece
that can be transferred in and out of the dataset. In the examples above,
each of the arrays in the -define- has enough room for one record
from the dataset. It does not matter how the receiving variable is
defined, just so long as there is room for 128 consecutive 8-bit bytes.

The number of records that can be transferred is limited by the amount
of memory available and the defined size of the buffer.

xzreturnx values after -datain- or -datacut - are:

-1 The transfer was successful

0 No dataset attached

1 A disk error occurred

2 Thedataset is open in read-only mode or

the section of the file that was accessed is
reserved by another user

2-70

-datain-/-dataout-
Note that floating point numbers do not fit evenly into one record. One

dataset record will hold 21 floating point numbers with two 8-bit bytes
left over.

A file must be attached when a -datain- or -datacut - is executed. If
no dataset is attached, *zreturn* is set to 0.

2-71

-define-

Non-executable command

define a,b,loc,stor(5),k $% 16-bit integers

integer,8:%x,y,z $% 8-bit i1ntegers
HK2, W2, Z2 $% also 8-bit integer
f,48:hgt,t,u,v(28) 3 floating point
height =hgt $% ancther name for
* $3 "hzt"
i,8:alpha (3@ $$ array of 38 8-bit
* $% integers
value=45 $3% defined constant
f(i,j)=1+3j P up to 6 arguments
* $% in function

The -define- command allows you to give names to variables,
constants, functions, and arrays of variables. The name can be up to 15
characters in length. It can be any combination of alpha, numeric, and
symbol characters, but it must begin with an alpha character. After a
variable is defined, you can refer to it throughout the lesson by the
defined name. The -define- command must occur before the first
Micro PLATO unit.

All variables named in the -define- command are known as glcbkal
variables, as opposed to local variables that are defined inside
(local to) a unit. The maximum number of global and local defined
names available at any given time is approximately 1000.

There are several different types of variables. The different types of
variables are specified by indicating the type at the beginning of a
new line. The description must be followed by a colon.

1,8: (or integer,8:) 8-bit signed inte