
Micro PLATO® Author Language

Version 4.1

Fteference Manual

®

MPAL REFERENCE MANUAL REVISION RECORD
REVISION DESCRIFTION

(9 /1 /88) Manual rdcased, reflecting version 4.0 software.

A (3/15/89) Manual revised to reflect version 4.1 software.

Publication Number 97602372A
Revision letters I, 0, Q S, X, and Z are not used.

c#nfhg,::
reserved.
the United States of America.

I 1988, 1989 by Control Data Corporation.

Address comments about
this manual to:

frftE+n¥:¥Mgi¥3:i;§]:cEiM
oTaj=`i`Ae/'commentsheetinthe
back of this manual.

®

ntents

Chapter 1-Introdtiction

Overview
About This Manual _
Notational Conventions

Chapter 2-Micro PLATO Language Commands

The commands are presented in this chapter in alphabetical order.

Chapter 3-Micro PLATO Language Pseudo Commands

Pseudo Comlnands
C
*

S/block
S/endlabel
S/label
S/nst
S/touch
S/use

Chapter 4-Micro PLAT±P System Reserved Words
I ,.(, .`.) f_, \,1W

system Reserved ,vy,9rj9,S„
zanscnt ., i[finti h'-*f d

Zar8S
Zar8Sa
zbcolor
zbpalette
zbuttous

2-1

zcharheight and zcharwidth
zclock
zcorrm
zdata
zentire
zextra
zfcolor
zfiplen
zfpalette
zjcount
zjud8ed
zkey
zlbuttons
zldone
zmode
znbuttons
znscreens
zntries
ZOpcnt
zorder
zpalette
zplanes
zptrlx and zptrly
zptrx and zptry
Zrecs
zrestart
zreturn
zrouten
zscore
zscreen
zscrrecs
zspell
ztouchstatus
ztouchx and ztouchy
Zttype
Ztstype
zwcount
zwherex and zwherey
zxpixels and zypixels

4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48

®

®

ii

Chapter 5-Micro PLATO Language System Defined Functions

System Defined Functions
Mathematical Functions
System Functions

zbdataL
zk
zlen8th
zvloc

Chapter 6-micro PLATO Language Argument Passing

Introduction
Input Arguments
Output Arguments
Onritted Arguments
Expressions and Variables as Arguments
Value Type Conversion
Restrictions
Argument Evaluation Order
Evaluation and Assignment of Arguments
Argument Passing Syntax

Passing Copies of Arrays
Returning Copies of Arguments
Passing by Address
Adaptable Arrays

iii

Chapter 7-Micro PLATO Language Unit Libraries

Introduction
Using Unit Libraries
Restrictions
Examples of Uhit Libraries

A Simple hibrary
Multiple Libraries
A Lesson Driver Stored in a Library
A Library with Private Units

Chapter 8-Micro PLATO Language Serial Channel Input/Output

Introduction
Definitions and Terms
RS232 Connections and Cables
Serial Channel Programming
Interrupt C ontrol
Checklist for Problems
Examples

Chapter 9-Videodisc Library

Overview
Getting Started

Obtaining the Units
Defines Needed

Library Contents
Library Control Units

virit
vfinish

Videodisc Control Units
vaudio
vgetaud
vdir
vgetdir
VAun

1V

vgetnun
vspeed
vgetspd
vdisp
v8etdisp

Videodisc Command Uhits
vsetin
vgetfrm
vplay
vplayw
vstart
vstop
vwait

Chapter 10-Digital Audio Library

Overview
Getting Started

Obtaining the Units
Defines Needed

Library Contents
Library Control Units

ainit
afinish

Digital Audio Control Uhits
aopen
aclose
asetoutp

Digital Audio Command Units
aplay
aplayw
astop
await
atest

10-1
10-1
10-2
10-2
10-3
10-3
10-4
10-5
10-6
10-7
10-9

10-10
10-11
10-12
10-13
10-14
10-15
10-16

Chapter 11-Micro PLATO Language Routines Library

Overview
Automatic Sign-on / Sign-off Routines

netirit
si8non
si8noff

Modern Autodial Routines
dtoa
CO-

• Sending Data
Sending and Receiving Data
Receiving Data

Date, Time and Day Routines
date
dock
day
cdates
cdatef
cdatev
ctimes
ctimef
ctinev

vi

®

11-1
11-2
11-4
11-5
11-7
11-8
11-9

11-11
11-12
11-12
11-14
11-15
11-16
11-17
11-18
11-20
11-22
11-24
11-26
11-28
11-30

Chapter 1

• Introduction

®

Overview
About This Manual
Notational Conventions

Overview

The Micro PLATO Authoring System (MPAS) is designed to allow
courseware authors to develop and denver computer-based
educational material in a microcomputer environment. To the user,
courseware delivered by MPAS appears very similar to courseware
delivered by the mainframe PLATO system. (The mainframe PLATO
system is often called the central PLATO system.) The most
noticeable difference between the two systems is that displays plot
much faster in the micro environment.

The language used to develop MPAS courseware is a high-level
language called the Micro PLATO Author Language. The Micro
PLATO Author Language is very similar to the TUTOR Language,
which is used on the central PLATO system. The Micro PLATO
Author Language is executed by a microprocessor that is inside the
microcomputer. Therefore, each user has a processor devoted solely
to his or her purposes. On the other hand, the TUTOR Language is
executed by the mainframe computer. Therefore, all central PLATO
users share the salne processor.

About This Manual

This manual explains how to use the Micro PLATO Author Language
to write lessons that can then be condensed and executed via the
Micro PLATO Authoring System (MPAS). A detailed explanation of
MPAS can be found in the M!.cro PLATO A#thori.ng Sysfeffl User's
G#i.de, which accompanies this manual. A brief description of the
remaining chapters in this manual follows.

1-1

Miao PLATO Author Language Reference Manual

M!.c7.a PLATO Irfz7€gwage Co7#r#¢7!ds provides, in alphabetical order,
detailed documentation on every command's syntax and application.

M!.c7.a PLATO Le7Igowge Pse#do Co"77c¢7!ds provides, in alphabetical
order, detailed documentation on every pseudo command's syntax
and appncation.

Mz.c7.a PLATO Sysfc777 Rcscrz)ed Words provides, in alphabetical order,
detailed documentation on every reserved word's syntax and
application.

Mioro PLATO I.angunge System Reserved Functions provides, in
alphabetical order, detailed documentation on every system reserved
function's syntax and application.

Mioro PLATO Language Argument Passing presents aLn ower`iiew of the
argument passing capabilities of the language.

Micro PLATO Language Unit Libraries presents all cIver`Tiew of the \ir\it
library capabilities of the language.

Micro PLATO I.anguage Serial Channel Input|Output presents ar\
overview of the serial channel input/output capabilities of the
language.

Vidcodz.sc L!.Z7r¢ry provides information on the videodisc player and
how to use it in conjunction with the language.

Dz'gz.faJ A#dz.a Lz.Z7xfl7t/ provides information on the using digitized
audio in conjunction with the language.

Mz.cro PLATO Le7ig#¢gc Li.brflny Ro#£!.7ccs describes the standard library
routines that are a part of the language.

1-2

Introduction

1-3

Notational Conventions

The following conventions are used in this manual:

• All Micro PLATO commands are surrounded by hyphens
and printed in PLATO characters; for example, -at -.

• All Micro pLATo reserved words are surrounded by
asterisks and printed in PLATO characters; for example,
zrel:urn.

• All Micro pLATo function names are surrounded by
asterisks and written in PLATO characters; for example,
zk.

• Shifted function keys are indicated by affixing a 1 to the end
of the key name. For example, SHIFT-BACK is also known as
BACKl and SHHr-NEXT, as NEXT1.

These delimiting symbols must not be used when you are writing
code. For example, if we say that the -compute-command sets
zret urn, your code would look like this:

compute result , buf (i) , len
if zreturn > -1

at lHIJF
write fin error occurred.

end i f

Some commands are used only to give information to the condensor.
These "non-executable" commands, such as -de f i Tie-, -key I i 5t -,
and -darrow-, are indicated by the words "Non-executable
command" in the upper right comer of the first page of the
description. They are not executed when the lesson is run, but their
indusion in the lesson has some effect on its execution (for example,
the -key I i 5t - command is not executable, but the lists prepared
with it can be used with the -keyt ype- command).

®

®

®

Chapter 2

• Micro PLATO Language commands

The commands are presented in this chapter in alphabetical order.

®

®

•allow-

al low erase
al louJ ke}+a,plato,blanks,arrouJ, jkeys, lkeys
allow SS set opposite of default
set i i Tlg5

The -a I 1 ou- command is the opposite of an -i nh i b i i - command; it
permits an action that would otherwise have been inhibited. The
-a I I ow- comlnand is provided because the settings for the - i nh i b i i -
command are cumulative throughout a main unit. It is sometimes
necessary to cancel a particular setting of - i nh i b i i - without
disturbing the other - i iih i b i i - status. All settings of both - i nh i b i i -
and -al I ow-are cleared when entering a new main unit.

The default settings are the same as these two statements:

al low arrow, erase, keys, plato, j keys
inhibit blanks

A blank tag -al I ow-sets the opposite of the default settings, and is the
same as these statements:

i nTi i b i i arrow , erase , ke}/a , p I at a , I. ke}/a
al low blanks

The tags for -al low-are:

arrow

b I ank5

erase

Display the arrow symbol ®) on the screen
when an -arrow- command is encountere`d.

Judging will be initiated even if a student
presses a j key without entering a response.
NOTE: The default setting at an arrow is
-inhibit bldnk5-.

Do a fun-screen erase when moving from one
main unit to another.

2-1

•allow-

j keys

keys

2-2

Non-function initiate-judging keys will be
displayed.

Keys will break through Micro PLATO
-Pause-.

Enable local key processing.

Start processing output from the CPU. Output
from the CPU is processed until an
-inhibit plato-is executed.

ansv 1492
ansv we i ght
ansv x-2
wrongv 3JFH] lH
ansv 7H, 2%

-ausv-

SS exact ai'iswer required
SS variable ok
es expre5sione ok
SS range is + or - 1ff
es 7ff i5 the expected response,
SS with a range of + or - 2%

The -aTi5v- and -urongv- are used to judge numeric or algebraic
answers. If the response matches the tag of the -ansv- (within the
specified tolerance), an "ok" judgment is given and the indented
commands (if any) after the -ansv- are executed. If a -un-oiigv- is
matched, a "no" judgment is given, and the indented commands are
exeouted.

The tolerance can be specified as a range or a percentage deviation. If
no tolerance is desired, omit the second argulnent.

Note that currently, only expressions that evaluate to less than 215-1 can
be used in the tag of the -ai.isv- command. If you want to use an
expression that evaluates to a larger value, -ca I c-the expression into a
floating point variable and use that as the tag of the -an5v-. Also, if
you want to use a number larger than 215-1 in the tag of the -ansv-, it
must be written in floating point fomat (with a decimal point). In other
words, -ansv gJFJF#JF-must be written as -ansv 9JF#JFjF. H-.

2-3

-answer-

ansl^ier <F] Fin> [big huge] elephant.
i^iroTlg <a an> [pink red] elephant
answer {a,Tar,count} SS embedded variable
ansi^Ier SS blank tag

The -an§Iuer- and -wroTig- are judging commands. The tag shows the
expected response of the student. If the student's response matches the
tag of an -answer- command, an "ok" judgment is given and the
indented commands (if any) after the -aTiswer- are executed. If the
student's response matches a -wrong- command, a "no" judgment is
given and the indented commands are executed.

Words enclosed in < > are optional words; the student can include any
or none of them.

Words enclosed in [] are required synonyms. The response must
indude one and only one of the words from each [] . Words not
enclosed in brackets are simply individual required words.

Punctuation marks are treated as individual words. These punctuation
marks are allowed: , . ? ! ; : " If the -answer- contains a punctuation
mark, it must be included by the student. The apostrophe (as in the
word "don't") is treated as a letter, not as punctuation.

For embedded -an5w€r- commands, the entire command must be
embedded. If the answer must be composed of several pieces, it must be
prepared with a -pack-, as follows:

pack string,count , I See a {a,var,namelen}

answer {a,string,count}

Note that the delimiter for Micro PLATO -ansuer- is a sp¢ce. A co771777a
is treated as a required word for the student's response, #of as a
delinriter.

2-4

-arswer-

Parentheses () are treated as letters. Do #of use them to enclose
synonyms; use the square brackets [] for synonyms. The -answer-
command with no tag will be matched if the student's response is the
SPACEBAR, NEXT or a jkey alone (*zj count * = "), or one of the
symbols that are considered punctuation in Micro PLATO C . ? ! ; : "). If
the touch panel is enabled, any touch will match the blank tag
-answer-. Be sure to include an -a I I ow b I arks- when using the
blank tag fom` of the -aTiswer- command.

The fonowing shows how you might use the command with no tag:

arrow 5 I rty; bu f
al low
eTlab I e

• j key
anener
.at

ur i i e
endarrow

(1) , 3q
b 1 aTiks
touch
back

1 Jr 1 ff

aTisuer mat ched

For this example, any of the following responses will be judged correct:

• a SPACEBAR press

• a typed punctuation mark

• atouch

• any combination of the above three

• ajkey

See also the documentation for -arrow-, -an5v-, -aiiswerc-, and
-exact -.

2-5

-arswerc-

answerc (expr)Stlii5 is ttie negat ive answerS
aTlswer for zeroSan5wer for oneSS
ansuer for three or greater

The -aTisLAierc- and -wroiigc- commands are conditional forms of the
-ari5uler- and -wrong- commands.

Note that in the above example, there is no answer given for the case
where the expression evaluates to 2.

The only delimiter permitted with these commands is the text
delimiter¢). To create this symbol, first press the ACCESS key, then
press the Co"A key (,).

Conditional commands must have at least two options. A conditional
command with only one option will give a condense error. For
example:

ansl^lerc exprSanswer for negat ive valueS

will give a condense error.

The end of the line in an -ansuerc- or a -wrongc- is treated like a
space. For example:

ansuerc exprSnegat i ve
aTisuerSzero Or great er

is the same as

answerc exprSnegat ive an5uerSzero or greater

2-6

-arrow-

arrow place;buffer,maxchar5
arrow x,y;buff{1),long

The -arrow- command signals that the student is expected to type a
response. An » is plotted on the screen when the student can begin to
type.

The first tag of the -arrow-specifies where the » win appear. It can be
either fine (x,y) or coarse (row/column) grid and must be followed by a
serfucolon.

The second tag gives the start of a buffer for storing the student's
response. The most convenient buffer is an indexed 8-bit array:

define i,8: buffer(59)

When an array is used, you must index it (you cannot use the name of
the array alone). For example,

arrow lffl#;buffer (1) , 5Jff

The second tag is followed by a comma.

The third tag gives the length of the judge buffer; that is, how many
characters the student will be allowed to type (must be greater than
zero). The number of characters actually typed by the student is given
by the reserved word *z j count * .

When you first enter an arrow, the answer buffer is zeroed.

Note that the sequence of judge and response commands started by an
-arrow- must be terminated by an -endarrow- command.

2-7

•anow-

The indented commands that follow the -arrow- are executed
immediately. When an exdented (that is, nonindented) command is
encountered, the » is plotted and the computer waits for the student to
enter a response. When the student initiates judging ®y pressing NEXT
or some other jkey or by exceeding the -force I ong-), processing
resumes at that first exdented command.

The exdented commands (that may include both regular and judging
commands) are then evaluated in the order in which they appear until a
judging command that matches the student's response is found. If a
match is found, the indented commands that immediately follow the
matched command are executed. Then, if the response received an "ok"
judgment, control passes to the -endarrow- and out of the range of the
arrow.

If a -un-ong- type command is matched or the -endarrou- is reached
before any answer-judging command is matched, the judgment is "no."
Execution stops and waits for the student to type another response. As
soon as the student presses any key, control returns to the -arrow- and
execution resulnes with the first exdented command.

If any answer-judging command matched and there is an -i fmat ch-
command in the -arrow- structure, the indented code after the
-i fmat ch-will be executed each time through the -arrow-.

See also the documentation for -answer-, -I oTig-, -force-, and
-i fmat ch-.

2-8

®

-at-

®

at 1 inespace SS coaT=e grid
at 12JF8 SS line 12, space 8
at 723 SS line 7, space 23
at finex,fiTley SS fine grid
at 123,448

The -at - command indicates the starting position of display on the
panel. It can be expressed in fine or coarse grid. The tag can be a
calculated expression. It sets the variables *zwherei{* and *zwherey*
according to the tags.

The fine grid units are in dots (0-511). Point (0,0) is the lower left comer
in fine grid. The coarse grid units are lines (1 at top to 32 at bottom) and
spaces (1 at left to 64 at right of the screen). For example, the top left
character position on the screen is 101, the bottom left is 3201, the top
right is 164 and the bottom right is 3264. The address of a character
always refers to the lower left hand comer of the character box (8 screen
dots wide by 16 dots tall).

On some machines (including the IBM PC and the CDC PITS), the dots
in the vertical direction are scaled so there are 256 lines of 512 dots.
Characters are thus 8 dots wide and 8 dots tall.

2-9

-aha-

atrm 142# SS -at-with No change to
rfarg i n
ati'im pos SS variables & expressions ok
atrm` 2fl#,15# SS fine or coarse grid

The -at nm-command,like -at -, sets a screen location for displaying
text, data, and drawings. The -at nm- command alters *zwherex* and
zwherey but does not set a new left margin for continued lines of the
display. Continued lines are aligned with the margin set by a preceding
-at -, or if there is no -at -, to the default position, character space 1.

When -at rm-is used with a continued -wr i i e-, the left margin of
only the first line of the -wr i i e-is affected. Subsequent lines of the
continued -wr i t e- use the left margin set by a previous -at -. This is
convenient for text with indented titles and such.

For example, the following code:

at 2413
at rm 2 42JF
write F-irst Heading

First line of some paragraph of text
Second line of the paragraph of text

atnm 2a2H
write Second Heading

More text in Second paragrapli of
display.

produces this display:

First Heading
First line of some paragraph of text
Second line of tlie paragraph of text

Second Headi ng
More text ill second paragraph of
d i sp I ay .

2-10

®

®

attach ny5et SS
attach (file(1)) es
attach (file{1)),chuin SS
attach rry5et„-1 SS
attacli (file{l)) ,Jr,ff es
at i ach SS

-attach-

attacli file Tiam€d "myset"
drive " f i le attached Shared
"drium" i5 drive specifier
drive omitted, rw mode
file on drive fl attaclied ro
detach the current file

The -al i ash-command forms a connection between the Micro PLATO
lesson and a dataset that is stored on a disk. An -at i ach- with no tag
detaches the cunent file.

first tag Actual name of the dataset or a variable. If a
variable is used, enclose it in parentheses. The
variable should be at least ten 8-bit bytes long.
It should be filled out to ten bytes with zeros.

second tag

third tag

Expression that indicates the disk drive on
which the dataset to be attached is located.
The actual numbers that are used can vary
from system to system, depending on how
many drives are defined. See the information
on drive mapping in the Se££z.rzg Lrp Yo#r
Co7i¢.gwrfl£!.o7t section of the user's guide.

Expression that indicates the access mode of
the file. This tag can be omitted. If it is, the
default mode (shared) is assumed.

The allowable values for the access mode tag are:

-1 Read/write This allows the current user to read and
write the file, but all other users will only
be able to read the file.

0 Re ad-only The user will only be able to read the file.
Others will be able to open it in read/write,
read and shared mode.

2-11

-attach-

1 Shared

2 Exclusive

The user will be able to read and whte the
file. Others will be able to open it in shared
and read-only mode.

The user will be able to read and write the
ffle. Other users will not be able to open it
in any mode.

Note that if the second tag is omitted, all disk drives are searched for the
specified dataset.

After -at i ash-, the reserved word *zret urii* equals:

Cormection ok.
File does not exist on the disk.
Disk error.
Illegal disk drive number in the second argument of
the co-and.
The file is attached elsewhere in either read/whte
or exclusive mode.
Illegal access mode value.

On MS-DOS systems, the Micro PLATO datasets have names of the
form f ilename.dat. In the Micro PLATO language, however, the
.dat is understood and should never be included. Also, again due to
MS-DOS constraLints, the dataset name is limited to eight characters, the
first of which must be a letter. The remaining seven characters can be
either letters or nulnbers.

See also the documentation for -f i I e-, -ays f i I e-, -ddt a i n-.

2-12

®

®

-axes-

axes xmax,ymax SS tags must be in fine grid
axes neg?{ , iiegy , posx , posy
axes 1 Jrjr,1Hfl
axes -20, -50, lJap, 2flH

The -axes- command specifies the x,y boundaries of the graph axes
and draws lines along these axes. Au arguments are in fine-grid dots.

If the two-argument form is used, the ><m i n and yin i n boundaries will
be at the origin tr,H).

There cannot be a zero (lF) in the tag of a two-argument -axes-
command. If you do not want the line to appear, use i for that
argument. If you want to label a positive axis on the inside, use the
four-argument form with jr as the value for the 3rd and 4th tags. For
labeling on the inside of a negative graph, have the xm i n and/or yin i n
equal to ir or a negative number and greater than the xmax and/or
ymax.

All origin and boundary information is kept until you alter it with
another -gor i g i n-, -axes-, or -bounds- command.

2-13

-back-/-backl-

back unit i
back var,unit:ml ,uriitH,unit i ,errunit
backl unit I
backl var,unitml ,unitfl,unit 1 ,errunit

See the documentation for -ne+<t -.

2-14

-base-

base SS no tag

Ordy the blank-tag fomL of the -base- command is allowed at this time
in Micro PLATO.

After completing a help sequence, the user is returned to the base unit.
The system automatically sets the base unit to the main unit in which
the help-type key was pressed. The -base- command is used to change
this default retun option.

A -base- command with no tag clears the base unit. In other words,
there will be no automatic sequencing when a help sequence is
completed.

A help sequence is started when a help-type key is pressed.

See also the documentation for -he I p-.

2-15

-beep-

beep SS no tag

The -beep - colnmand activates the sound-making device.

2-16

-block-

block a3,bob,12

The -b I ock- command copies consecutive variables from one location
to another location. In this example, the variable a3 and the 11
consecutive variables following it (12 variables total) are copied into bob
and the following variables.

The tags for the -b I ock- command are:

first tag from variable
second tag to variable
third tag length

The number of bits copied depends on the type of vaLriable used for the
from location. In the above example:

- if a3 was defined as an 8-bit integer, 12 8-bit bytes would be copied.

- if a3 was defined as a 16-bit integer, 24 8-bit bytes would be copied.

- if a3 was defined as a 48-bit floating point number, 72 8-bit bytes
would be copied.

2-17

-bounds-

bounds rmax,ymax
bounds xmin,ymin,xmax,ymax
bounds iflir, iiFir
bounds -2fl,-3Jr, lHH,15jr

The -beuncls - command establishes positive and negative boundaries
on the x and y axes (relative to the origin) just as the -axes- does, but it
does #of draw the axes in.

In Micro PLATO there are no default settings for this command. You
are required to set the values for this command before any of the
graphing commands will work.

Tags for -bounds- are in screen dots. Zero is not a legal tag.

All -bounds-, -gor i g i n-, and -axes-information is kept until you
alter it with another -bounds-, -gor i g i Ti-, or -axes- command.

2-18

®

-box-

box cortier 1 ; corner2
box cornerl :corner2;thick SS opt ional thickness
box xcorTier,ycorner;corner2 SS fine or coarse
box ;256,256 SS one corner a+ Screen location
* SS other at 256,256
box 9" SS one corner at ",fl; otlier at
* es 9lJF
box SS blank tag draws a box from
* SSH,flto ill,51l

The -box-command draws a rectangular box whose opposite comers
are at the two locations given. Comer 1 can be any of the four corners;
comer 2 is the one diagonally opposite comer 1.

Thickness specifies the number of lines or dots thick that you want the
walls of the box to be. If the thickness value is positive, the box wall will
be built up in an outward direction from the comers. If thickness is a
negative value, the buildup is in an inward direction.

Thickness values of - I , jF, 1 , and blank (that is, none specified) all mean
the same thing: the box wall is to be one line thick.

If the first location is omitted (-ben ; loc2-), the current display
position is used as one comer. If only one location is specified
(-box 9 lJF-), a box is drawn with one comer at the specified location
and the other at location # , JF.

The blank-tag fom` of the -box- command is equivalent to the
following command line.

box O,ff;511,511

After execution of -box-, the system defined variables *zwherex* and
zwhErey are set to the lower left comer of the box for boxes with
positive thickness. For boxes with negative thickness, *zwherex* and
zwherey are set to the lower left comer of the last-drawn interior box.

2-19

-branch-

branch lend
branch express, 99neg, Hzero, lplu5, 2plus
branch var/3,ggo, 9more,x,12to,Jrgo

The -braticli-command is used to branch to different lines of code
within the s¢mc unit. You cannot branch between units. A branch can
only be made to a line with a statement label. The statement label is
written in the command field and must start with a digit and be seven or
fewer characters in length (SHIT, FONT, ACCESS, and punctuation are not
allowed).

For example, if var is negative, Micro PLATO will branch to statement
label lskip. Otherwise, the code between the -branch-and 1 ski p
win be executed.

un i i oTle
braTich var, lskip,x
* some cede
*
*
lskip

It is not permissible to use a label more than once in the same unit. This
is because a -branch- (or -dot a-) operates only within a unit.

A -branch- command and its tags must be shorter than the maximum
line length allowed in the condensor. See the Co7tczc7}sor L!.777!.£s section
for more information.

2-20

•buffer-

buffer Setup;portnum,variable, length
buffer input ;portnun,variable,byl:es

The -bu f fer- command is used to manage a circular buffer of data
bytes that have been received from the serial port or from the central
system. After you have set up a buffer, whenever the specified port
receives a data byte it will be automatically stored in the associated
buffer. You can determine how many bytes are currently in a buffer,
and you can transfer bytes from the buffer into other variables.

Some of the features of the -bu f fer-command are:

• It provides a consistent way of handling serial port data and/or
central system -xm i i - data.

• There is no artificial limit on the size of the buffer.

• You do not need to use the -i nt rupt - command.

• The -bu f fer- command will handle serial port interrupts even
during -pause- and -arrouj-commands.

• You do not need to continuously scan the serial port while waiting
for data.

The -bu f fer Set up- command is used to connect a port to a
data buffer. The command syntax is:

buffer Setup; portnuni, variable, lengtli

setup A literal keyword to indicate that you are
setting up a data buffer.

2-21

®

-buffer-

portnun

variable

I engt h

The port to which the connection should be
made. Valid port numbers are:

1 Central system -xmit -data
2 Serial port data

The starting variable of the data buffer for the
specified port. If you use local variables for
the buffer, it will disappear when the unit is
exited, and unpredictable things will happen if
an interrupt occurs on the specified port.

The total length of the data buffer. The
interpreter will store pointers and other
information in the first 8 bytes of the data
buffer, therefore I engt h must be 8 or greater,
and the maximum number of received data
bytesthebuffercan hold is (lengtli -8).

Note that the I eiJigt h is in 8-bit bytes, regardless of the type of
the buffer variable®

The -louf fer set up-command will set *zreturn* to one of the
following values :

-1 The buffer has been set up successfully

0 The value of length is less than 8

1 The port number is illegal

After a -buf fer setup-command has been executed, when an
interrupt occurs from the specified port, the interpreter will read one
(8-bit) data byte from the port and store it in the specified buffer. The
zbdat a function can be used to find out how many bytes are in a
particular buffer.

2-22

-buffer-

Each buffer created by the -bu f fer set up- command is managed as a"first-in, firstout" circular buffer, using pointers and other information
at the beginning of the buffer. To ensure that the pointers and the
buffered data remain correct, the buffer variables should never be
manipulated directly.

To copy data from a buffer into other variables, the -buf fer i nput -
command is used. The syntax follows:

buffer input; portnun. variable, bytes

i nput A literal keyword to indicate that you are
reading data from a data buffer

port mum The port to which the connection should be
made. Valid port numbers are:

1 Central system -xm it -data
2 Serial port data

variable

byt e5

The variable into which the buffered data
bytes win be copied

The number of data bytes to copy from the
buffer into the variable(s). This value is
always in 8-bit bytes.

The -buf fer input -command will set *zreturn* to one of the
following values :

The transfer was successful

length is greater than *zbdata (portTium) *
(for example, if there are not enough bytes in
the buffer)

The port number is illegal

No -buf fer Setup-command has been
executed for the specified port mum

2-23

•buffer

Notes about the -buf fer-command

Make sure that there is no data waiting before you do the
-buf fer set up ; 2 -by checking the input status word and discarding
all bytes by doing -x i n- commands on the port until the status
indicates there are no more bytes. See the description for the -x i Ti-
corrirriand aimd tine Micro PLA:TO IAnguage Serial Channel Input |Output
section for more inforlnation.

After setting up a serial port buffer (for example, -bu f fer Set up ; 2 -),
you must explicitly enable external intermpts in order to activate the
buffer. Extemal intermpts are enabled by executing an -enab i e eat -
command a7id an appropriate -xout - command.

If an interrupt occurs on a port and the system finds that the data buffer
is full, the byte will be read in and discarded. The contents of the data
buffer will not be changed.

If -bu f fer- commands are used instead of a -rece i ve- command, the
central PLATO lesson must not send any +>on i i - data before the Micro
PLATO unit executes the -buf fer Setup-command. Any data
rreceived before a -bu f fer 5e.t up- command has been executed would
go into the system receive buffer instead of the specified buffer.

TThe -xin-and -xout -commands remain unchanged. This allows
programs to send and receive unbuffered input and output to the serial
and parallel channels. However, if you have a port receiving data with
the -bu f fer- command, you will not be able to -x i Ti-data from that
same port toecause the -bu f fer- command will take it first).

It is possible to have separate data buffers for serial data and central
eystem -i<mi i -data operating together. The pert 1.ium parameter will
indicate which buffer is referenced.

If a machine has more than one serial port, you will still be able to have
only one serial data buffer. This is due to the fact that the software does
not allow differentiation between the various serial port interrupts.
Therefore, you must have interrupts enabled for only one serial port at
a time.

2-24

-buffer-

ExamDle usina the -buf fer-command

un it buf fer
i , 8 : buf f (lag)
y(lm
couTit

*
* Set up a buf fer tllan can hold " data bytes.
* Data will be read from serial chaTinel.
bLrffer setup;2,buff(i) ,98
*

if =returri > -1
. at 3Jrl#

write buffer setup error {s,zreturn}.
braTich lstop

end i f
*
enable ext
*
calc v(1) ¢ ofll6

v(2) a oH26
v{3) ¢ off42
v(4) ¢ Ojr63
v(5) ¢ ol#3

out

OOF

end1oop
*

erase
dote
bu f fer
if

SS enable external inputs
SS FITTER the -buf fer setup-
es eiiable character ready
S$ 12JrJr baud
S$ 7 data bits
SS even parity
SS modem control "ON"

3,v(I) ,5 es Send control b)+tea

i^iait for data to come from serial charmel
zbdata(2) < gJr
at 1110
erase 4JJ
write zbdata(2) = {s,zbdata(2)}.
pause ff. 5

read and display " bytes at a time.

1show,count ¢ Jr,8
i nput ; 2 , v (i) , i fl
zreturn > -i
at 3Jr i Jr

2-25

-buffer-

ur i i e
branch

input error {5,zreturn}.
1stop

end i f
at 14lff + (1fl# * count)
write {s,v{1)} <5,v(2)} {5,v(3)} {§,v(4)}
write {s,v(5)} {s,v(6)} {s,v(7)} {s,v(8)}
I^irite {s,v(9)} {5,v(")}
1 Show
*

1stop

See also the Mioro PLATO Language Serial Channel Input|Output sectior\,
and the documentation for the -enab I e-, -xout -, and -x i Ti-
corrmands.

2-26

-calc-

calc x a alplia+beta/3
calc y¢ 5

v ¢ y/i

The -ca I c- command is used to perform calculations and to set
variables to values. The -ca I c- command can be continued to other
lines, with one expression per line.

The following items can be components of -ca I c-expressions:

• All user-defined variables

• Spedal symbols: a (degrees), fl' (pi), e ®ase ofnatural logs)

• Operators: ¢,+,-,*,+,*,/,<,>,±,±,=,±

• Bit operators: Smasks, Sunions, Sdi ffS,Scl5S, SarsS

• Logical operators: Sands, Sors

• Parentheticalsymbols: (), [], [}

• Strings: x (the character code for the letterx)

• System-defined functions: int (a/b} , frac (a/b) , and so
forth

• ab5{a/b), camp(x), zvloc(x)

• zkoceyname) -See*zkey*

2-27

-calc-

The following functions can be used only in the -ca lc-commands, the
-show- commands, the -comput e- command, and the -an5v-
co-and:

• §iTi(x) (xinradians)

• siTi(x°) (xindegrees)

• cos(x) (xinradians)

• cos(xo) (xindegrees)

• arctan (x) resultsinradians

• log (J{)

• alog(x)

• exp{x) (equivalenttoex)

• ln(x) (equivalenttologex)

• ** (a**b isequivalenttoab)

F3anae of values

TThe range of values a floating point variable can be assigned via a
-cal c-t)pe operation is 1.7xl0-308 to 1.7xl0308. Underflow values are
set to 0, and overflow values generate an execution error. The range of
values an 8-bit integer variable can be assigned is -128 to 127. A 16-bit
integer can be assigned values from -32768 to 32767.

2.28

ulc-

Notes on -calc-

Always be aware of the size of Micro PLATO variables with which you
are working. The difference between 8-bit and 16~bit integer variables
is important. Be very careful not to overflow the capacity of these
variables.

All integer arithmetic is 16-bit, regardless of where the operand came
from or is going to. This means that an operation such as Sc I sS
performed on an 8-bit variable will give unexpected results.

Special care must be taken if the result of a Micro PLATO expression
could be a floating point number. If there are no floating point variables
or constants in the expression, the expression will be evaluated in
integer mode. For example, both of the following sets of code will be
evaluated as -pause I -:

pause Bfl/ 1 Hff
calc i ¢ 8JF
calc j ¢ 1##
pause i /j

If these -pause-commands are to be evaluated as -pause . 8-, the
expressions must contain a floating point variable or constant. For
example, both of the following sets of code will be evaluated as
-pause .8-:

pause B#. /1 ffjF.
calc i ¢ 8#
calc j ¢ lJ"
pause i/j ". JF

If an integer variable is assigned the result of an integer divided by an
integer, rounding will occur. If an integer variable is assigned the result
of the * i nt * function of an integer divided by an integer, truncation
will occur. Following is an example.

2-29

-calc-

define i,16: x,y.=
unit calc
calc x ¢ 1jF7l
calc y ¢ #lHff
calc z ¢ int {x/1Jmar)

SS y = 11
SS z = 1H

Notes on Micro PLATO expressions

An a prefix indicates an octal constant. For example:

calc woof € o77
at 1 JFIJr
i^irite woof = {s,woof}.

willdisplay"wcof = 63."

An h prefix indicates a hexadecimal constant. For example:

calc wcof ¢ 1ifla
at 1#1jJ
I^irite woof = {s,woof}.

willdisplay"woof = 1JJ."

There are no operators for manipulating whole aITays.

The double quote marks are used to place a character in the lower 8 bits
of avariable: -calc lettr ¢ "z"-. Onlyonelettercanbeenclosed
in quotes at a tine.

Because of round-off within the computer, 3.(10./3.) is not exflc£Zy 10,
and without some intelligence on the part of the computer, the
expression [3.(10./3.)=10.] would be false.

Therefore the expression a = b is considered tobetrue (-I) if
abs{a-b) < 2-26.

2-30

-calc-

Note that this causes all numbers less than 2-26 to be considered equal as
far as the =, ±, <, >, S, and 2 operators are concerned. To make a detailed
test on small numbers, use 2-26(a) = 2-26®) instead of a = b.

Exponentiation of negative numbers is legal if the power that the
number is raised to is an integer:

calc test a (-I)**2 SS tliis is legal
calc test ¢ (-i)**.5 SS this i5 NOT legal

Arithmetic ooerators

TThe arithmetic operators that are used in Micro PLATO are:

Assigrment € The assigrment operator assigns a given value
to a variable. Assignment can occur any place
an expression can. For example:

calc x ¢ 5 SS set x to 5
calc a(i¢1) ¢ 1 SS set a(1) to 1

SS and i to 1

Addition + Simply adds two values. For example:

calc x¢y + z

Subtraction - Subtracts one value from another. For
exanple:

calc x ¢ b - c

Multiplication x, * Multiplies one value times another. For
example, the following two statements are
identical:

calc x¢y I z
calc x¢y * I

Division +, / Divides one value by another. For example:

2-31

-calc-

ca1c
ca1c

Exponentiation * *

X¢y+I
X¢y/Z

Puts one number to the power of another. For
example:

x ¢ 2**15

Precedence

Exponentiation evaluates from right to left
instead of left to right®

The various mathematical operations can be grouped into different
classes. According to the priority they have in evaluation, certain parts
of an expression will be evaluated before others. The following table
indicates the priority of the operators, from highest to lowest.

1 functions -system and author defined

2 arithmetic operators:

**
* (or *)
/ (or +)
+ and -

3 bitoperators: Sclss Sarss SmaskS Sunions Sdiff$

4 logicaloperators: > ± < ± = I

5 logicalcombination: SandS Sor$

6 assignment: ¢

If more than one of these occur in a single expression, they are done in
the order listed above.

Note that the order of operations within a group is NOT always left to
right. Use parentheses to make your expressions clearo

2-32

-calc-

Loaical operators

Logical comparisons and decisions are made by using the logical
operators:

< less than

> greaterthan

± less than or equal to (ACCESS <)

± greaterthan or equalto (ACCESS >)

= equalto

± notequalto (AccESs=)

When PLATO evaluates an expression that contains logical operators,
that expression is given one of two values:

means the expression is true
means the expression is false

To insure an unambiguous expression, always enclose the logical
expression in parentheses:

calc value ¢ 47 + (height I 55)

When using floating-point arithmetic, introduction of round-off errors is
inevitable. For that reason, comparisons of very small floating-point
numbers and nearly equal numbers are handled by using epsilon
values. Numbers that are within the epsilon value of each other are
treated as equal. Numbers with an absolute value between 0 and 1 are
evaluated against the base epsilon value of 2-8. For numbers with an
absolute value >1, the epsilon value depends on the magnitude of the
number.

2-33

ulc-

ExamDles of Loaical operators

Elapression Value of
variable

(height=6m heightis60
height is not 60

L08ical
value

true
false

Numerical
value

-1

0

(wrongs > 2) wrongs is greater true
than 2
wrongs is 2
or smaller

false

(radius±254) radiusis 254 true
or smaller
radius is greater false
than 254

Combinina Loaical Expressions

Different logical expressions can be combined, logically, with the Sands
and Sors operations. Consider these two logical expressions:

score<5 I"score" i5 less than 5)

i^troTigs±2 ("wTngTigs" is greater than or eq..ial to 2}

Value of component Expressions Value of Entire Expression

(5core< 5) {wrong5±2)

2-34

true
false
true
false

(score< 5) Sands (urongs±2)

true
false
false
false

(score < 5) {i^irongs I 2)

true
true
false
false

•calc-

(score< 5) Sors (wrong5±2)

tine
true
true
false

The SandS combination is true ordy if both component expressions are
true, whereas the forS combination is false only if both component
expressions are false.

Bit oDerations

Bit operations in Micro PLATO riake sense only when used with 16-bit
integer variables. Performing bit operations on 8-bit integers or on
floating point values gives unreliable or meaningless results.

The bit operations are:

Sc I sS

Sar5S

Smasks

Sun i one

Sd i f f s

circular left shift

arithmetic right shift (with sign extension)

logical intersection

logical union

logical difference

2-35

•calc-

Circular Left Shift (Sclss)

The Sc I sS operation is a true circular left shift. That is, the contents of
the indicated variable are shifted left and the left-most bits are wrapped
around to the right portion of the variable in a circular fashion. If 12ae
hex is stored in the 16-bit integer variable r, the 16 bits of r are:

flflJFi H#iH i#iJr iiiff

After execution of the following commands

calc s¢r Scls$ 3
*circular left sliift of 3 bits

the 16 bits of a are set to:

iHgi "iHi jFiii #jrjrfl
+ shift left 3 bil:a

In hexadecimal notation, the value of a is 9570 hex. A circular left shift
greater than 16 is treated as the stated shift minus 16 (for example,
r Scls$ 2# is equivalent to r Scls$ 4). A negative shift is treated as
no shift at all (for example, r Sc lss -3 is the same as r Sclss Jr).

Note that Sc I sS is executed on 16 bits even when an 8-bit variable is
used.

Arithmetic Right Shift (Sar5S)

The arithmetic right shift operation (SarsS) shifts the contents of a word
to the right. The right-most shifted bits "fall off" the end of the word,
and the sign bit (the left-most bit) is extended to the left to retain the
sign (+ or -) of the integer. If 12ae hex is stored in the 16-bit
integer variable r, the 16 bits of r are:

flHHI H#lff lH1" lllH

2-36

-calc-

After execution of the following commands

calc a ¢ r Sars$ 3
*arithmetic right §1iift of 3 bits

the 16 bits of a are set to:

HHHH EHIH E\H\ H\Hl
+ shift riglit 3 bits

The value of 5 is 0255 hex.

The last 3 bits (110) are shifted off the right end as a result of
r Sars$ 3. These bits cannot be recovered.

Recall that the sign bit is the left-most bit of a word. For positive
integers, the sign bit is 0; for negative integers, it is 1. A negative integer
is represented by the two's complement of the corresponding positive
integer (one's complement plus 1).

Fight Shifting Negative Numbers

If r is 12ae hex, then -r is ed52 hex. The example now shows the effect
of arithmetic right shift on a negative number.

111# 11#1 HIJJl gJF1#

After execution of the following commands

calc 5 ¢ (-r) Sars$ 3
*aritlim€tic right shift of 3 bits

the 16 bits of a are set to:

1111 iilpi ieriH ioio
+ §1iift right 3 bits

2-37

-calc-

The value of a is fdaa hex.

As the sign bit (left-most) is shifted right, it is extended into the empty
bits at the left end of the word.

Mask (Smasks), Union (Sunions), Diff (Sdi f fS)

The SlinaskS operation is an intersection of bit patterns (commonly
known as and).

x Smasks y produces a " i" only where BC)Tll
x and y have "1" get.

The Sun i one operation is a union of bit patterns (commonly known
as or).

x SunionS y produces a "1" where EITHEF!
x or y have "1" set.

The Sd i f fs operation determines where the bit patterns are different
(commonly known as xor).

x Sdiffs y preduces a "I" only where
x and y DIE-F-EFE

For example:

x = 011D lfllJ7 JJl111flll = 6a7b Tiex

y = 111fl JJllfl rtylHl llflo = e65c hex

x SmaskS y = ffl" ff#" fllfll 1Jr#ff = 625E± hex
x SunionS y = 11" 11" fflll 1111 = ee7f tlex
x SdiffS y = iflfljF iiHjr Hfl" #iii = 8c27 hex

2-38

•calcc-

calcc score2 * wrongs,
wroiigs¢fl , , score¢score+ 5 ,
i^irongs¢i^n-oTig5+ I, , wrongs+wrongs+ 3

The -ca I cc-colnmand makes one of several assignments. The first
argument determines which assignment will be performed. Each
argument of the -cal cc-can assign a different variable. (The -ca I c5-
makes one of several assignments to the same variable.)

Value of
expT-ion

fscore-2*i^frongst

T,egat i Ye
0
i
2
3

4 & larger

Ca I ou I at i on
done

uneTlgs¢#
none per formed
score¢score + 5
i^irong5¢i^iroTigs + 1
rione per forrnd
L^irorigs¢t^irorigs + 3

Two consecutive commas in a -ca I cc- indicate no assignment is to be
done.

The -ca I cc- can have a maximum of 61 arguments.

2-39

.calcs-

calcs probtyp, re5ult¢a-b, axb, ai.b, a+b„ b

The -ca I cs- colnmand makes one of several assignments to a variable.
The first argument determines which assignment will be performed.
The second argument specifies which variable will be assigned.

As with all conditional commands in Micro PLATO, the index
expression forobt }+p in the example) is evaluated and rounded to the
nearest integer. Depending on the value of the expression, one of the
listed assignments will be made to the variable specified (re5u I i in the
example).

Value of
probtyp

negative
0
1
2
3

4 & larger

Value assigned
to result

result¢a-b
resu I i ¢a *b
re5u1t¢a+b
re5ult¢a+b
No change to resu I i
resu 1 i ¢b

Two consecutive commas in a -ca 1 cs- indicate that no assignment is
to be done.

The -ca I cs- can have a maximum of 61 arguments.

2-40

-ccode-

2-41

ccode int ,params{1) SS interrupt number,
* parameter buffer
ccede h2l,params(I) SS DOS interrupt

The -ccode- command allows cans to OS interrupts.

The interrupt number should be defined as follows:

define i,16: int

The intemipt number can be any valid DOS interrupt number
greater than 1 and less than 256. Nonstandard interrupt numbers
should be avoided.

When the -ccode- command is executed, the specified interrupt
routine will be executed. For example, a value of hex 21 (h21 or 33
decimal) is a DOS function call.

The parameter buffer should be defined as follows:

define i,a: param5(14)

When any DOS function call is requested, the parameter buffer must
contain the 8086 register values that will be set before the interrupt
occurs. After the interrupt, the parameter buffer will be updated to
the register values returned from the interrupt routine.

-ccode-

The format of the parameter buffer corresponds to 8086 registers in the
following way:

parameter(1) = al
parameter(2) = ah
parameter(3) = bl
parameter(4) = bh
paraneter(5) = d
parameter(6) = ch
parameter(7) = dl
parameter(8) = dh
parameter(9) = si low byte
parameter(10) = si high byte
parameter(11) = di low byte
parameter(12) = di high byte
parameter(13) = flags low byte, bit 0 = carry flag
parameter(14) = flags high byte

2-42

char

char

®

-char-

12 SS alternate font slot 12
oEH3T 6H , oHEZH2H , oHH2E2H , oHEZH2H
OHHZHZH , OHHZHZH , oHH37 6H , OHHHHHE
-12 SS standard font, comma
oHE$7 6H , OHHZHZE , oEH2H2H , oHHZH2H
oHHzfE2H , oHEZH2H , oHH3T 6E , OHHHHHH

char expr,a,b,c,d,e, f,g,h
cllar expr, col (1)

The -char- command is used to specify the design of a character in the
standard and alternate font character sets. It provides a way to modify
the design of a character under lesson control. In most cases, -char-
and -charset - are not both used in the same lesson.

The first tag specifies which slot of the character set will be loaded. If
the value specified is between 0 and 126, the slot in the alternate font
character set will be loaded. If the value is between 1 and -255, the slot
in the standard character set will be loaded. Note that slots 63 and 127
are reserved for the system and cannot be defined by the -cliar-
command. Attempting to assign these slots win result in an execution
error. Note also that character slot 0 is zero in the alternate font, not in
the standard font. You cannot change the standard font slot 0.

The remaining tags of the -char-command describe the character dot
by dot. In the two-tag form, the variable listed in the second tag is the
first of eight consecutive 16-bit variables that describe the character. In
the nine-tag form, the eight values are listed following the character slot
number.

In the character description, each number represents one vertical
column of the character, reading from left to right. Each column is read
from top to bottom. Expressed in binary, every dot is given a 1 for on
and 0 for off. The numbers can range from oO to ol77777. An outcof-
bounds value causes the -char- to be ignored.

A -char 1 i in- command should be used in conjunction with the -char-
command to specify the number of character positions that must be

2-43

-char-

reserved. The -char-command does not reference the -charl i m-
value when accessing a slot in the standard character set.

During lesson ihitialization, the standard character set will be loaded.
This means that the standard character set will be reloaded upon
-j unpout - to a new lesson.

The following table shows the standard PLATO character set and each
character's slot number. Note that this table uses hexidecimal slot
numbers. For example, slot 2D (decimal 43) is the uppercase M.

0123456789

E;P ff @ P , p o¢ (±) 6

I 1 FI Q

" 2 a F=

#3CS

$4DT

%5Eu

a 6 F- V

'7GW

(aH*

)9IY

*JZ

+'K

<L

=M

>N

/?0

2-44

aq/£6
b r S ,I EE

cs-ho

d i ¢ J + FE

e u = fr X

fvt
gw

-challin-

Non-executable command

charlim 23 SS reserves 5paee for 5lot5 JF-23
charlim 127 es maximum size for -charlim-
cliarl im fl SS reserves space for I character

®

The -char I i in- command is used to reserve terminal memory space
for characters that will be loaded with a -char- or -char5et -
command. The tag of the -char I i in- command specifies the largest
slot number of the characters that need to be used. Note that
-char 1 i in- refers to the maximum character slot number, and not to the
number of characters. Therefore, if you want to load only one character
and have it stored in slot number 113, you must specify -cliarl i in
113-.

The -charl i in-is a condense-time command. The number in the tag
must be an explicit value; it cannot be a variable. Also, if more than
one -char I i in- command is included in the lesson, the last occurrence
of the command sets the amount of memory that is reserved.

Since the loadable character memory uses up part of the space
otherwise available for a program, -char 1 i in- should be set to the
lowest reasonable value.

2-45

-chaLrset-

charset lesson, block
charset (varl) , (var2) SS variables in parentheses
char§et , blockiiame

The -charset - command loads a character set from disk. Both the
lesson name and block name must be stated. However, only the charset
block name is used. Character sets are stored in DOS files with the block
name as the first eight characters and the extension . chr. For
example, dem is stored on the disk as den . chr.

A character set is created with the character set editor.

To type an alternate font character at an arrow, press the FOP`IT key and
then the associated letter.

Loading a character set uses up part of the memory that is usually
available for the Micro PLATO program. This memory must be
reserved with a -char I i in- command. The amount of memory used by
the character set depends on the slot number of the highest character in
the charset (for example, a uses only one slot, but F` uses 64 slots even if
fl is the only character loaded).

After a -charset -, the possible values of *zret urn* are:

-1 Load ok
0 Charset not found
1 Disk read error
2 Access violation on the file (another user

has it open in exclusive or read/whte mode)

Note that when a charset is loaded into the terminal from disk, every
charset slot from 0 to the value given by -char 1 i in- is overwritten.
Thus, even if characters a-z and A-Z are defined in charset 1 and
characters 0-1 are defined in charset 2, both character sets cannot be
active at the same time.

2-46

®

-circle-

circle radius es whole circle
circle radius,al,a2 SS arc from al to az

® The -a i rc I e- command draws a circle or arc and the -c i rc I eb-
command draws a broken (dashed) circle or arc with its center at the
current screen position, *zwherex*, *zwherey* (perhaps set by a
previous -at -or -atnm-).

The variables *zwherex* and *zwh€rey* remain at the center for the
whole circle form and are reset to the last point drawn on the
circumference for the arc form.

The tag of a -c ire 1 e-command has one argument for a complete or
dashed circle and three arguments for a partial circle (an arc). A comma
separates all tags.

The first argument must always be the radius of the circle specified in
fine-grid dots.

The second and third arguments (optional) specify the beginning and
ending angles for arcs. They are expressed in degrees (no degree sign),
either as integers or floating point numbers. These angles are always
measured counterclockwise from the positive x axis.

Circles and arcs of large radius (i.e., >10,000 pixels) may not plot
correctly on all video displays.

2-47

-circleb-

circleb radius
c i rc I eb rad i us , ang I e i , ang I e 2

A broken circle is just a regular circle, but drawn with dashed lines. The
commands have the same form with the exception of the b after circle,
which indicates that the circle is broken.

See the documentation for the -c i rc I e- command for an explanation
of the tags.

2-48

®

-drkey-

c1rkey SS ,10 tags-

®

The -c I rkey-and -getkey-commands are used to examine and
manipulate the key buffer that contains up to twelve keys either pressed
by the user or pressed with the -press- command. If more than twelve
keys are entered by the user, the buffer will hold the first twelve keys
pressed. If an additional key is typed, it is not stored in the key buffer.
Any additional key -press-ed with the -press- command will
replace the key in the 12th position of the key buffer.

The -c I rkey- command zeroes the entire key buffer.

These commands are useful for collecting keys pressed while lengthy
-I oap-s or -ca i c-s are being executed.

Suppose a user types a ¢ b while a lengthy calculation is being
executed. The *zke}+* values of these keys would be stored in a buffer.
When the calculation is complete, the pressed keys could be retrieved
with the following -I oap-.

loop
Calc iTic¢inc+ i
getkey

outloop zkey=-i SS get out if Ilo keys ready.
calc ke}/(iTic)¢zkey SS store key

end1oop

In the above example, the following assignments would have been
made:

key (1) ¢6 5
key (2) ¢ i 3
key (3) ¢6 6

See also the documentation for -get key-.

2-49

-color.

co I or
co I or
co I or
co I or
co 1 or
co I or
co I or

d i sp I ay ; zye I 1 ow , zb 1 tLe
display;zwhite SS
display; ,zblack SS
de f i ne ; Tiew f g , . 2 , . 8 ,
pa I et i e ; fgpa I , bgpa I
pd I et i e ; rna i npa I
rep I ace ; pa I no , Tiew fg

change foreground only
change background on ly
.2

The -co I or- command works only with displays that support color.
The IBM PC with the color graphics display adapter and the CDC PPTS
with the standard display adapter work only in monochrome-the
-co I or- commands will have no effect. h addition, some of the
-co I or- commands work only on displays that have a programmable
palette.

Palettes

Some display adapters can display only a fixed set of colors. For
example, in high-resolution mode the IBM PC color graphics adapter
can display only two colors, black and white, which cannot be changed.
Displays like this are called fixed-palette displays.

Other display adapters, such as the one found in the PPTS Professional
workstation, can display a fixed number of colors at one time, but the
programmer can choose the particular colors that are on the screen from
a larger set of colors. Displays such as this are called programmable-
palette displays, or palette-based displays. The reserved word
zpa I et i e will be true (-1) on displays that have a programmable
palette and false (0) on displays that have a fixed palette.

The PPTS Professional workstation's display adapter is capable of
displaying 16 different colors at one time, out of a total possible 4096
colors.

2-50

®

®

®

®

<olor-

TThe-colordisDlau-command

TThe d i sp 1 ay keyword specifies the colors in which text or graphics will
be plotted in the current logical screen (see the -screen- command for
inforrmtion on logical screens).

color display;z}+elloi^i,zblue
color display;zwhite SS cliaTige foreground only
color display; ,zblack SS change background only

The first tag specifies the foreground color. This change takes effect
immediately; the next object plotted in mode write or rewrite will be in
this color. This command sets the system reserved word *z fco I or* to
the color specified by the first tag, and on displays with a color palette,
the reserved word *z fpa 1 et i e* to the palette number associated with
that color. In modes whte and rewhte the o7i dots of a character or line
drawing are plotted in the foreground color. In mode inverse the o#
dots of a character are plotted in the foreground color.

The second tag specifies the background color. This sets the system
reserved word *zbco I or* to the color specified, and, on palette-based
displays, sets *zbpa I et i e* to the palette number of that color. In
mode rewhte the o# dots of a character are plotted in the background
color. In mode inverse and erase the o7z dots are plotted in the
background color. For graphic objects ®oxes, lines, etc.) the o77 dots are
plotted in the background color.

Changing the background color with -co I or d i 5p I ay- will 77of
change the current color of the display. The next time the screen is
erased, expncitly with an -erase- command, or implicitly via a
-j umpout - or -j ump- command, the entire display will be cleared to
the current background color. If you want to actually change a color
that is already on the screen to another color (e.g., changing,all the red to
green at once without replotting the display) you can use the -co I or
rep I ace-command.

2-51

.color-

Either tag is optional; however, at least one tag must be present.
Each tag can be either a system-defined color variable, such as *zb I ue*,
or a user-defined color variable set by the -co I or de f i ne- command.

The fouowing reserved words define the eight basic colors recognized
by -co I or d i sp I ay-: zb I ack, zuuh i i e, zred, zgree", zb I ue,
zyel loi^i, zc}+an, and zmagent or zmagenta ®oth spellings are
acceptable).

Additionally, either tag can be -1, to indicate the transparent color® The
transparent color is used with logical screens to allow lower logical
screens to "show through." See the description of the -screen setup-
command for more information on logical screens.

After execution, *zret urn* can be:

-1 If thetagsarevalid
1 if one orbothofthe tagvalues was outofrange
2 Toomanycolors havebeen putinto the palette
3 Transparent color not allowed. No logical

screens defined.

The Dalette and -color disDlau-

Whenever a -co I or d i sp I ay- command is executed on a
programmable-palette display, the palette is searched. If the colors
specified in the tags are already present in the palette, those palette
entries are chosen. If the colors are not present, they are added to the
palette. If there are no free entries in the palette, *zret urii* is set to 2.
This inforrmtion is important if you are using the -co I or rep I ace-
and -co I or pa I et i a- commands to select your colors.

2-52

®

®

-color-

Embedded -color display_I_

The fonowing embedded forms of -co I or d i sp I ay- exist:

®

®

{co I or , f gnd}
{co I or , fgnd , bgnd}
<co I or , , bgnd}

co 1 or can be abbreviated to c:

<c , zwh i i e , zb I ue}

foreground col or
fgnd and bgnd
background co I or

The embedded forln performs the same function as -co I or d i sp I ay-:

color display;zyel low,zblack
mode

atom
ur i i e

returite SS make =Lire background
is changed

28Jr5
Touch the {c,zred}RED <c,zyel low}box!

In this example, the word RED is displayed in red, while the rest of the
text is displayed in yellow. Color changes made in the text of a
-wr i i e-command remain in effect after the -wr i i e-.

The -color clef ii.ie-command

co I or
co I or
co I or

de f i ne ; (tar) , redva I , greenva I , b I ueva I
define; (red) ,1,",jr
clef ine; (orange) ,i, . 5 , #

The de f i ne keyword of the -co I or- command allows you to define
your own colors.

2-53

-color-

The first tag following the semicolon must be a floating point variable.
This is the variable that will receive the color definition. It can be used
with subsequent -color display-, -color complement -and
-color replace-commands.

The second, third, and fourth tags specify the desired intensities of red,
green, and blue in the color. The intensity value can be a constant or
a variable, and it must be in the range 0 to 1, inclusive.

Care should be taLken when defining colors for use on displays with
limited color capabilities if you wish your lessons to be portable.

After execution, *zreturn* = -1 if the color is valid or 0 if one of the
color intensities was out of range.

See also the documentation for the color keywords *z fco 1 or* and
zbcolor.

The -color Dalette-Command

co I or
co I or
co I or

pa I et i e ; f gpa I , bgpa I
pal ett e; runwayp SS foreground
palette; ,textpal Ss background

The -color palette-command is similar to the -color display-
command. It is used to set the foreground and background colors to the
colors indicated by the palette numbers specified in the tags. (Note that
this command is not available on fixed-palette displays.)

On a programmable-palette display, each color on the screen has a
palette number associated with it. A palette number is an integer
whose value is obtained from the palette reserved words, *z fpa I et i e*
and*zbpalette*.

The first tag after the palette keyword is the foreground palette number.
The second tag is the background palette number. You should never

2-54

®

®

-color-

use a constant for a palette number; you should always get the palette
number from the *z fpa 1 et i e* or *zbpa I et i e* reserved words after
performing the -co I or d i sp I ay-command that introduced the color
into the display. For example,

color display;zred,zblue
calc redp a zfpalette SS remember tlie

bluep ¢ zbpalette SS palette numbers
*
* Intervening cede.
*
color palette;redp,bluepSS re§elect colors

The reason for this is that palette numbers are not constant: the palette
number for red may be different each time you use the color red.

Either the foreground or the background palette number can be omitted,
but at least one must be present. The omitted color is not changed. . .

The -co I or pa I et i e-command sets the *z fpa I et i e*,
zbpa I et i e, *z fco I or* and *zbco I or* reserved words to the
appropriate values. *zret urn* is set accordingly:

-1 The command was successful
0 The displayhas a fixed palette
1 Invalidpalettenumber

After the screen is erased ®y an -erase- command, or a -j ump-
command, or a -Screen Setup-command) all palette numbers are
invalidated: the palette is completely cleared out except for the
foreground and background. To get the correct palette numbers back,
you must remember the values of *z fpa I et i e* and *zbpa I et i e* for
each color that you define with -co I or di 5p 1 ay-. After a -screen
set up- command all palette entries are invalidated except for the initial
screen color.

The -co I or pa 1 et i a-command is most useful for selecting colors
that you have modified directly in the palette with the
-color replace-command.

2-55

color-

The -color replace-Command

color replace;palTiun,color

The -co I or rep I ace- command is used to change the definition of a
color in the palette. This will cause all objects on the screen painted with
that color palette entry to instantly become the new color. This is useful
for making objects "appear instantaneously," or for cycling an object
through a series of colors to perfomi an animation.

The first tag after rep I ace is the nulnber of the palette entry to be
replaced. Only numbers that have been obtained from *z fpa I et i e* or
zbpe 1 et i e should be used.

The second tag is the new color. It can be either a floating point value
defined with the -co I or de f i ne- command, or a color reserved word
(such as *zb I ue*).

After a -color replace-*zreturn* will be set to one of the
following values :

-1 Color replaced successfully
0 Fixed-palette display
1 Palette numberundefined or out of range
2 Can't replace transparent color

lf you replace the current foreground or background color, the values of
z fco 1 or and *zbco 1 or* will change accordingly.

The following is an example of making something appear
"instantaneously" by plotting it with one palette and then doing a
-co lor pa I et i e-to cause the text to appear.

unit i eat
i ,16 : i ext pa I, fgpal , bgpa I

erase
color display;zLAJTlite,zblack

2-56

-color-

2-57

ca1c

*
*
*
*
*
*
*
co I or
ca1c
*
*
*
*
co I or
*
co I or
at
ur i i e

*
*
*
*
co I or
at
ur i i e

Pause
*
*
*
co I or
Pause

fgpal ¢ zfpalette
bgpal ¢ zbpalette

Get a color palette number. We
choose red because we know it ism.i
in the palette already, i" ef feet
reserving a palette entry for our
use,

display;zred
textpal ¢ zfpalette

Change tlie color so tliat it is black
when we plot it.

rep I ace ; i end pa I , zb I ask

pa I et i e ; f gr 1
3JF5

While you are reading this, more text
i5 being plotted in the space below.
Press NEXT riow.

Write the text in the color that is
„hidden, "

palette;textpa1
7ff5
Tliis imas originally in black] Tiow it
has been made white.
keys=nerd

Make tlie text appear.

rep I ace ; i ext pa I , zwli i i e

<olor-

The -color comDleneTi{ -Command

The -col or camp I emeiit -command is used to specify pairs of
complementary colors. Complementary colors cannot be specified on
fixed-palette displays. However, you can still use mode complement on
them: fixed-palette displays have a fixed set of complementary colors.

TThe first tag after the camp I emeTit keyword is one member of the pair
of complementary colors. The second tag is the other member of the
pair. The colors specified cannot already reside in the palette (i.e., you
can't specify the same color to be the complement of two different
colors, except as noted below).

-Co I or camp I emeTit - commands must appear immediately after a
-screen Setup-or -erase-command and before any other
commands that draw on the screen or set colors in the palette (for
example, -drawl-and -color display-). Commands such as -calc-
are allowed, as is -co I or rep I ace-.

The values of *zret um* after a -co I or camp I eneTit - command are:

Complements set without error
The display has a fixed palette
The complement pair could not be added to the
palette. This is due to one of the colors already
having a complement in the palette or the palette
being full.

The o7I dots of objects plotted in mode complement will be in the
complementary color of the dots that they overwhte. (The o# dots are
#ored [exdusive-or] with the dots on the screen.)

Mode complement is useful for plotting objects such as cursors because
if you plot something twice in that mode the screen is returned to its
original state.

2-58

•color-

If no -co 1 or camp I ement - commands are specified, an arbitrary
decision is made on what the complements of the colors will be. Thus, a
completely different set of complements may be in effect if you don't
specify the complements after a screen erase. No guarantee is made on
the pairing of the complements if you don't set them yourself.

It is guaranteed, however, that the foreground and background colors
will be complementary after a screen erase on a display with a
progra-able palette.

It is possible to have the same color on the screen have more than one
complementary color, but you must set up the palette first with -co I or
rep I ace-. The following code will make blue the complement of both
red and yellow:

co I or
erase
co I or
co I or
co I or
co I or
co I or
fill
co I or
fill
mode
at
size
wr i i e

d i sp I ay ; zwh i i e , zb I ack

comp I ement ; zred , zb I ue
comp I ement ; zye I I ow , zgreen
display;zgreen
rep I ace ; z fpa I et i e , zb I ue
display;zred
jr, Ir; 256 , 511
d i sp I ay ; zye I I ou.
2 5 6 , 5 1 1 ; 5 1 I , fl

camp I ement
1 JJ 1 0

bold
This is in comple-
ment in mede bold

(Checks on *zret urn* have been omitted for clarity.)

2-59

.compute-

compute result , buf fer, length

The -comput e- command takes a number entered as a character string
and changes it into a number that can be manipulated. Arithmetic
expressions, such as 343-8, can be entered® The following functions are
recognized: sin(x), cos(x), log(x), alog(x), exp(x), and ln(x)a

The following symbols are also recognized:

ir, a, and a

The first tag specifies where the calculated value of the string is to be
stored.

The second tag specifies the location of the string of characters to be
evaluated, and the third tag gives the length of the string. The
maximum length of the string is 128 characters.

The -comput e- command handles superscripted and double asterisk
forms of exponentiation: 23, 4.21.2ul, (2+3)(3-1), 5* *2, 1.2* *3.4,
(2*3)**(3/2).

2-60

.compute-

2-61

®

After a -comput e-, the reserved word *zreturn* is

-1ok
0 a -Specs Ticops-is ineffect, and the string

contains an operation
1 fllegalcharacter
2 decinalpointerror
3 expressiontoolong
4 unrecognized operator
5 error in form
6 unbalanced parentheses
7 unrecognized function name
8 missing parentheses around

function argument
9 illegal value of function argument
10 dividebyzeroerror
11 floating point overflow error
12 floating point system error

Here are examples that produce the above *zret urn* values:

7 I +tan (45°) : No such function "tan"
8 2*5in 2Th': Shouldbe "2*sin (2tr) "
9 1/ln(-1) :Theargumentof lnmustbe

greater than zero
10 1 +1r: Undefined value
11 2*lH3H8:Valuegreaterthan I.7*i#3fl8

.compute-

This routine allows the user to enter two values. The sum of the values
is then displayed.

de f i 1|e

unit
arrow

ok

f!48: a'b
i,8: buff (lo)
compute
imfl;buff (1) , ifl
specs Tioop5

. compute a,buff(1) ,zjcount es store lst #

. do zreturn , x, error
endarrow
arrow 1210;buff (1) , lfl

5pec§ noops
ok

compute b,buff(1) ,zjcount S$ Store 2nd #
do zret urn , x, error

endarrow
at
ur i i e
**
ull i i
j udge
at

1512

The sum of <t,a} and {t,b} is {t,a+b}.

error
rl0
2 JF 1 Jr

writec zreturnSSNo operat ions are al lowed.S
There is an illegal character.S
There is a decimal point problem.S
Tlle expression is too long.S
There is an unrecognized operator.S
There is an error in form.S
There are unbalanced parentheses. S
f] funct ion name is unrecognized.S
There are missing parentheses around the
funct ion argument . S
fi function argument value is illegal.S
There i5 a divide by zero error.S
There is a floating point overflow error.S
There is a floating point system error.SS

2-62

•Copy-

arrouj 3";re5p (1) , 3fl
cop}+ copybuf (I) , 3JJ

The -copy- collrmand activates the Copy key. The first argument
specifies the starting variable of a copy buffer, and the second argument
specifies the length of the buffer (number of characters). In the example
above, the first variable in the copy buffer is copybu f (I) , and the copy
buffer is 30. characters long.

Alphanumeric information stored in the copy buffer is accessible at an
arrow by pressing the Copy key. Each press of the Copy key retrieves
one toord of information from the buffer and displays it at the arrow as
though the student had typed the information (a zoord is an alpha-
numeric string bounded by Micro PLATO punctuation). The SHFTr-
Cory key retrieves and displays the entire buffer.

The -copy- command will stop when a 0-byte is found in the copy
buffer or when the copy length is reached.

The -copy- command modifies actions that are performed only at an
arrow and consequently has no effect if it occurs anywhere in a Micro
PLATO lesson other than following an -arrow- command.

2-63

-Copy.

A -copy- command can be introduced or modified anywhere in the
arrow structure. In the following example, the Copy key is not active
after a resporrse of cat , but it is active after any other incorrect response.

arroi^i 3";reap (I) , 3#
zero copybuf (1) , 3fl
an5I~er dog
. at 51"
. t^'r ite great !
urong cat
. at 51ff

write No, try again.
TIO

. cop}+ copybuf (i) , "
block reap(l) ,copybuf(l) ,3ff

endarrow

2-64

-cstart-

Non-executable command

cstart SS Tliere are no tags for these commands
cstap
cstop*
cstop
* * * Statements after -cstop- are not
condensed.
cstart (Say: ''cee-stop" and "cee-start ")

Statements fonowing a -cat op- and preceding a -cat art - are Hof
condensed (-use- commands are ignored also). A -cat art - will
resume the condensing process. A -cat op* - will halt further
condensing. Commands following a -cat op* -will not be condensed.
A -csl: art - has no effect if it follows a -cat op* - command.

The c part of -cat op- stands for co77dc7!sc; that is, start or stop
co71de7zsz.7ig. There is an impued -cat art - at the beginning of each
lesson. Condensing stops at the end of the lesson.

The block-partial flag is the overriding flag. If a block is partialed out, it
will 7!of be condensed even if a -cat art - is embedded within that
block.

2-65

-cstoI,.

cstop SS There are no tags for tliis command

The -cat op- command stops condensing until a -cat art - command
is found.

See the documentation for the -cat art - command for more
infomation.

2-66

-cstop*-

cstop* SS Tliere are no tags for tlii5 command

The -cat op* - command stops all condensing, as though the end of the
file has been reached.

See the documentation for -cat art -.

2-67

-danow-

darrow buff(1) ,len

Non-executable command

The -darroiAi-command sets up a default buffer and length for all
-arrow- commands that (physically) follow it in the source code.

This code: Is equivalent to:

darrow buff(1) , " arrow lJ"#;buff(1) ,1fl
arrow 1 ral I Jr

The buffer specified in the -darrow- command should not be a local
variable.

2-68

-data-/-datal-

2-69

ddt a a i done
data var-2,expt i ,x, expt2

datal aidone
datal var-2,expt 1 ,x,expt 2

See the documentation for the -he I p- command for information.

-datain-/-dataout-

define i,8: alpha(123)
i,16: list(64)
f,4a: flt(22)

attach myset
datain mum,alpha(I) ,1
dataout mum, varble, rec5

The -dat a i n- command transfers data from a Micro PLATO dataset
(which is stored on the disk) into Micro PLATO variables. The first tag
tells with which record the transfer should start. The second is the first
variable of an array into which the data will be moved. The third tag
tells the number of records to transfer.

The -dat aout - command takes data from the named variable and
transfers it into the dataset.

Each record contains 128 8-bit bytes. The record is the smallest piece
that can be transferred in and out of the dataset. In the examples above,
each of the arrays in the -de f i ne- has enough room for one record
from the dataset. It does not matter how the receiving variable is
defined, just so long as there is room for 128 consecutive 8-bit bytes.

The number of records that can be transferred is limited by the amount
of memory available and the defined size of the buffer.

zret urTi values after -dat a i 11- or -dat aout - are:

-1 The transfer was successful
0 No dataset attached
1 A disk error occurred
2 The datasetis openin read-onlymode or

the section of the file that was accessed is
reserved by another user

2-70

-datain-/-dataout-

Note that floating point numbers do not fit evenly into one record. One
dataset record will hold 21 floating point numbers with two 8-bit bytes
left over.

A ffle mwsf be attached when a -dad ai n-or -dataout -is executed. If
no dataset is attached, *zret urn* is set to 0.

2-71

-define-

define a,b,loc,star(5) ,k
i nt eger , a = x , y , z
x2 , y2 I z2
f , 48 : 1igt , i . u , v (2H)
he i ght =Tlgt

*
i , 8 : a 1 pha (3JF)

*
va1ue=45
f (i , j) =i +3j

*

Non-executable command

SS 16-bit iTiteger5
S$ 8-bit integers
SS also 8-bit integer
SS floating print
SS anotlier Tiame for
SS "tlgt"
SS array of 3" 8-bit
SS integers
SS clef ined constani:
SS up to 6 arguments
SS in function

The -de f i lie-command allows you to give names to variables,
constants, functions, and arrays of variables. The name can be up to 15
characters in length® It can be any combination of alpha, numeric, and
symbol characters, but it must begin with an alpha character. After a
variable is defined, you can refer to it throughout the lesson by the
defined name. The -d€ f i ne- command must occur before the first
Micro PLATO unit.

All variables named in the -de f i Tie- command are known as g 1 oba I
var i ab I es, as opposed to I oca 1 var i ab I es that are defined inside
(local to) a unit. The maximum number of global and local defined
names available at any given time is approximately 1000.

There are several different types of variables. The different types of
variables are specified by indicating the type at the beginning of a
new line. The description must be followed by a colon.

i,8= (or integer,8:) 8-bit Signed iTitegers
f,48: tor floating:, or f:) Signed floatiiig point
i,16: 16-bit signed integers

If a line is not preceded by a variable type, the variables on that line will
be of the same type as the preceding line. If the first define line does not
include a variable type, the variables on first line will be 16-bit integers.

2-72

0

-define-

define list(3H) SS array of " 16-bit tars.
cost=li5t (lfl) SS Tiame for lJFtli elemenl:
value=45 SS defined constant

0 big=837
bigger=40HHff
dec i = 8 . 7 SS may be floating point

Indexed variables are specified simply by naming the variable and then
the number of elements expected: I ist (3H) . The elements are then
I ist (I) , I ist (2) ,......, I i5t (3#) . Specific names canbe given to
individual elements of the array: cost = 1 i st (1 0) .

When working with characters (letters), an array of 8-bit variables with
one variable for each character is the most convenient arrangement.

The constants are treated the same as a value read from a particular type
ofvariable; forexample,value (45) is an 8-bitvariable,big (837) is
a 16-bit variable, and b igger (4JJffHff) is a floating point because it is
greater than (215~|).

Variables are allocated in memory in the order in which they are
defined. This information is useful for programmers who want to
manipulate blocks of variables.

Defined Functions

Several common functions are automatically defined for you, but you'1l
probably find situations where you could use additional functions. For
example, a i n (x) and cos (x) are system defined functions, but i an (x)
is not a system defined function. As part of your -de f i ne- statements
in a lesson, you can include:

define tan(x) =5in(x)/cos(x)
ant i log (x) ="**x SS defined funct ion

2-73

-define-

Once the function i an {x) has been defined, you can use it as you
would use the system-defined Sin (x) or cos (x) . For example:

calc angle a tan(45°)

Rules for Definina Functions

- The defined function cannot contain a previously defined quantity
on the left side of the equal (=) sign:

define circ(r) =2trr SS LEGFIL

define f,48:r
circ {r) =2iT'r SS ILLEGfiL

r is a previously defined quantity and it appears on the left of the
equal sign.

- The argument on the left side of the equal sign is really only a
"dummy" argument, so if r is replaced with some undefined
variable ("dummy" variable), the function would be legal. Replace
r with q in the inegally defined function:

define f,48:r
circ (q) =2trq

- The defined function must make sense when enclosed in
parentheses.

define minus=-1,plu5=+

- A (+) is megal, but (-1) and (+ I) are legal.

2-74

e

-define-

- A function can have up to 6 arguments.

define height tft,in)=2.54(12*ft+in)

This is a two-argument function. It converts a height specified in
feet and inches to centimeters.

Defined Function Examoles

define f,4B:r
c i rc (q) = 2Th'q
in i nus = - 1
height (ft , in) =2 . 54 (12* ft + in)
rcot =sqrt (r)
funct (dumm}/) =3r-root +dummy* *Z
add2JF= (r¢r+ 2cO
ass i gn = (r-i)

TThis set of defines is used in the example below. Assignment arrows (¢)
can be used in defines to produce some unusual looking -ca I c-
statements. Previously defined variables and functions can be used on
the right of the equal sign.

ca lc r¢5r-i
res i rc (r+ 4)
r¢9
r¢ funct (i in
add20
r¢16
ass i an
r¢circ (1#) +height (6 , JF)

2-75

-define-

The equivalent -ca I c-statements would be:

ca lc r¢5
r¢sqrt (5)
r¢2Th'* (5** (I/2))
r¢9
r¢3*9-sqrt t9) +1H**2
r¢124+2#
r¢16
r¢sqrt (16)
r¢2tr* 1 #+ 2 . 5 4 (12 * 6 +JF)

Eauivalences

de f i ne i,16: a SS a 16-bit variable
i,3: b=a,c(2)=a SS equivalences

The equivalence symbol (=) is used to define relationships between
variables of different types (and sizes).

In the example above, b is an 8-bit integer that is equivalent to the upper
byte (the leftmost 8 bits) of the 16-bit variable a. In the two-element
array c, the first element, c (I) , is also equivalent to the upper byte of
variable a. The second element, c (2) , is equivalent to the lower byte of
a.

The ability to define such equivalences is particularly useful when
dealing with datasets. The dataset can be read into a buffer of 8-bit
variables. Then, within that buffer, 16-bit or 48-bit variables can be
defined:

define i,8: buff (128) SS space for i dataset
record

i,16: x=buff (1) ,y=buff (3)
f,43: mas5=buff (5)

2-76

®

-define-

Multiple levels of equivalences are permissible within a local or global
variable set. However, if a local array is equivalent to a global anay, no
other variable can be equivalent to that local array.

For example:

unit

*

de f i ne
unit

equv
i,a: buff (4fl)
name{2Jr) =buff(1) SS multiple levels
fir5tn (lfl) =name (i) Ss of equivalencing
initial=fir5tn(I) SS are "ok".

i,8: buff (4JF)
equv
i,8: iiame(2#)=buff(I) SS tliis is "ok".
fir5tn(1JF) =name{1) SS this is not.

The left-most thighest order) bit specifies the sign of the number.
The sign bit is fl for a positive number and 1 for a negative number.

Internal Variable Formats

Numbers are represented in "twos-complement." If x > 0, -x is
represented as comp(x) +1.

The ranges of values that can be stored in integer variables are:

8-bit integers
16-bit integers

-128 to 127
-3ifflerR,togif]erfl

The 48 bits of a floating point variable are:

left-most bit:
next 15 bits:
right-most 32 bits:

sign of the mantissa (0=+, 1=-)
biased exponent
unsigned mantissa

2-77

-define-

:leg:°£¥upe:TrtonmT7£Lrso.¥03?ore]:+SxeLto°3o88:£8nificantdititsandcan

Local Define Sets

A local define set establishes definitions (variables, functions, and
constants) that are active only in the unit in which the define set is
dedared. The definitions are Zoc¢j to the unit.

Local variables prevent the occurrence of conflicting variables when a
unit is executed (or attached) via -do-from another unit. Since local
variables are active only in the attached unit, they cannot conflict with
definitions or alter values outside this unit.

Local variables must be defined in a local define set within the unit in
which the variables are used. The local define set is dedared by a
continuation of the -un i i - command to emphasize its connection to the
unit. The -clef ine-command is omitted.

The format for Micro PLATO local variables is identical to the format for
Micro PLATO global variables.

In this example, the variables can be used only in the unit where they
are defined.

unit

ca1c
*
unit
*
*

2-78

one
r i ght , wrong
i , 6 : index
f : result (3fl)
Tiunber = 1 5
result (i) ¢sin (45°)

two
variables whicli are local to unit Qnf are not
valid in this unit

-define-

Within a unit that contains local variables, the global variables defined
for the lesson are not active unless the local and global define sets are
merged. To use global definitions in addition to local definitions in the
attached unit, indude at the beginning of the local definitions the
statement merge , g I oba I : . IThe final colon is necessary.)

Write the program as:

define fii'`st, last
f : resu I i

*
unit

more cede. . .
somename
merge,global: SS can use global defines
a.b
c (1H) , d (4)
b¢2
resu I i ¢tr/ 3 SS use of "result" is

SS al lowed

It is not possible to merge two local define sets.

At the end of a unit with a local define set, the local define set is purged
and the global define set that was active prior to the unit is reactivated.

See the Micro PLATO Language Argument Passing sechon tor rr\ore
information on local defines.

2-79

-disable-

disable ext
disable toucli
disable mouse
disable panel

The -d i gab I e- command turns off pointing device input and external
key input. See the documentation for the -enab I e- command for
further explana tion.

2-80

-disk-

disk catalog; uni i , 5tartvar , numvars , entry, cntvar
disk space;unit ,total ,avai I , largest

The -disk-command has two fom\s: -disk catalog-and
-disk space-. The -disk catalog-format will be discussed first;
-d i sk space- will follow.

The -disk catalog-Command

The -d i §k cat al og-command provides the means to obtain a catalog
of files on a disk unit.

The command returns catalog file entries for all of the various types of
files on the specified drive, including all Micro PLATO user files, system
files, and non-Micro PLATO files (except hidden files). Each catalog
file entry contains the name, type, and length of a file.

The command syntax for -d i 5k cat a I og- is:

disk catalog; unit , buffer, numvar5, entry, cntvar

In the command syntax above, the entries have the following meanings:

LJ,n i i

bu f fer

numvar5

Drive unit number. See the Scffz.77g Lrp Yo#r
Co7i¢.gz{7`¢£z.o7t section of the MPAS user's guide
for an explanation of drive mapping.

Catalog buffer starting variable. This should
be an array.

Number of variables in buffer. This should be
the number of elements in buffer, if buffer is
an array.

2-81

-disk-

enl:ry

cntvar

The number of the file entry to start with.

The return variable that contains the count of
catalog file entries read into buffer.

The -d i sk cat a I og- command will read in as many file entries as will
fit in the buffer specified or until the end of the disk directory is reached.

You can use the cut Tar and ent ry arguments to loop through a
catalog and display the files in it. The first time you execute a
-f i I e cat a I og- command, entry should be I . If your buffer is
completely filled, there are probably more files to be cataloged. You
should, therefore, set ant ry to ant tar+ I and loop back to get more
ffles. This technique is demonstrated in the example below.

If the starting entry number is greater than the total number of files
on the drive, the return variable (cnt tar) is set to zero.

The *zret urii* values are the same as for the -f i I e- commando

Catalog File Entry Format

Each catalog file entry is 32 bytes long and will contain a file name, type,
and length. The format of a catalog file entry is shown below:

Eye
00-19
20-21
22-25
26-31

Description
File nine
File type
File length
Unused

The twenty-byte file name for CDC 110 diskettes will be ten bytes of
file name and ten bytes of block name. For DOS, the 20 bytes are the file
name. Character set files are different, however. They have the first ten
bytes equal to the string char5et , and the second ten bytes equal to the
character set block name.

2-82

-disk-

The 16-bit file type is broken down in the following manner (the values
aLre given in hexadecimal).

Tin
0000
0001
0002
0003

00FC
00FD
00FE
00FF
FFFF

Description
Leson-
Dataset
Charset
Reserved for system files

Reserved for system files
Syslib
Systema and systemb
Disk directory
Non-Micro PLATO files (= -1)

The 32-bit file length field has the format:

22 23 : 24 25
sect ors byt es

Bytes 2 2 and 2 3 contain the number of completely used 128-byte
sectors. Bytes 2 4 and 25 contain the number of used bytes in the not-
completely used sector at end of the file (always 0 for 110 files).

Example of -disk catalog-

un i i di skcat

at
wr i i e
arrow
ok

i ,16 : I ist (32JJ)
i , 1 6 : ent ry , cnt var , i , ent ry , dr i ve
i , 8 : buf f (im
f , 4 8 : a i ze , sect ors
i fl 1 fl
Catalog of what drive
zwherex+ 8 , zwherey ; bu f f (1) , 1 fl

compute drive,buff (1) ,zjcount

2-83

-disk-

if drive <fl SorS drive> 9 Sors zreturn ± H
judge noquit

. endi f
endarrow
erase
calc entry ¢ i
loop

disk catalog;drive, I i5t (I) , 32#,entry,cntvar
out loop cntvar

at
ur i i e

• dot a
. calc

.at
showa
at

• unite
fl I oap
a{
ur i i e
Pause
erase

I calc

D
2#1
F.i le name T}/pe E;ize
Oloop, i ¢ JJ,cntvar-i
Sectors ¢ list (i*16+12)
size a sectors*128 + list (i*16+13)
d , zwherey-16
I ist (i * 16+ i) I 2fl
2 I * 8 , zwherey
{t,list (i*16+ll) ,4} <t,size,"}

H , zwherey-3 2
F+ess NEXT to coTit inue.

entry ¢ entr)/ + cntvar
end1oop
erase
at I JFIJr
i^irite Press NEXT for another drive.
ne?ct d i skcat

The -disk space-Command

The -disk space-command provides the means of obtaining the total
amount of space on a drive and the amount of space available on that
drive.

2-84

®

®

-disk-

The -d i sk space-command returns three floating point values that
provide

1. the totalamountofspace on a disk

2. the total amount of available space on a disk

3. the size of the largest file that can be created on the disk

A condense error win occur if the receiving variables are not floating
point type.

The format of the command is:

unit

disk Space;unit ,total , avai 1 ,largest

Drive unit number. See the Scffz.7cg LJp Yo#r
Co7If.g#rafz.o7[section of the user's guide for an
explanation of drive mapping.

total

avai I

largest

A floating point variable that receives the total
number of bytes of space on the drive.

A floating point variable that receives the
number of bytes of drive space currently
available.

A floating point variable that receives the size
(in bytes) of the largest file that can be created
on that drive.

Note that all values are returned in bytes. The value of *zret urii* is
the same as it is for the -f i 1 e- command.

See also the documentation for the -f i I e- command.

2-85

do unit Ss uncondit ional
do expr,unitneg,unitfl,unit I... SS condit ional
do unit (argl , arg2 , arg3) Ss argumented
do unit (argl ,arg2;ref I ,ret2,re±3)
do expr,ullitTleg,x,unitl,unit2 SS x = iio op

A -do- command causes execution of a unit named in the tag, with no
change of main unit and no screen erasure. On completion of the
named unit, the commands following the -do-are executed.

The conditional -do- causes execution of units to a main unit
dependent on the value of a variable®

The argumented -do- can pass arguments to the unit. The -ret urii-
command returns values to the main unit when return arguments are
included.

When the conditional -do- statement is encountered, the expression is
evaluated and rounded to the nearest integer. If this integer has a
negative value, the unit in the un i i meg position is attached. If the value
of the expression rounds to zero, the unit in the un i i # position is
executed, and so on. For example:

do trees,maple,walnut , oak,elm,birch

When the value of i rees is equal to a negative number, un i i map I e
will be executed. When the value of i ree5 is zero, un i i wa I nut will
be executed. When the value is one, unit oak will be executed. When
trees equals two, uni i e I in will be executed, and when the value is
three or more, un i t b i rch will be executed.

2-86

-clap

Conditional -do- statements can be continued over more than one line:

do (exp). minus, zero, one, two, three, four, five
six,Seven SS may be cent inued

If you wish nothing to happen for one of the conditions, you can use the
unit name x to indicate that nothing should happen. For example:

do (exp) ,minus,zero,x,x,toobig

When exp is 1 or 2, the conditional -do- will execute no units.

The maximum number of units that can be specified in a conditional
-do-is lpJF.

The -do q-command is equivalent to a blank-tag -return-.

2-87

-dot-

dot 2JFJF, 39B SS fine grid
dot 1242 SS coarse grid

The -dot - command lights a single dot on the screen at the location
named in the tag of the command.

A -draw- colnmand with the same tag will produce the same display as
a -dot - command, but -dot - is much faster.

It is, of course, possible to draw anything using the dot-by-dot method,
but this is very time consuming. So, to create a figure, use -draw-,
-rdraw-, or -gdraw-.

2-88

®

-doto-

oto lend, index ¢ begin,end, increment
oto 999,counter ¢ I,9 SS assume step Size

SS of i
oto 3move,x a 2fl#, lJFH,-a SS negative step

es size ok

The -dot a- command allows you to have an iterative loop within a
single unit. A -dot a-loop extends from the -dote-command down
to and including the statement label named in the tag of the -dot a-.

doto 4finish,var ¢ 1,12,3

4finish = statementlabel
= index variable
= initial value of index variable
= final value of index variable
= increment for index variable

The statement label must begin with a number and contain seven or
fewer characters (no shift, access, or fonts). The initial, final, and
increment values of the index variable can be constants, variables, or
expressions. All must be integers. Specifying a floating-point value will
result in a condense error. The default increment for the index variable
is 1 (if no increment is given, a + 1 is assumed). A negative increment
for the index variable is permitted.

dote 3finish, var¢ i,12,3
calc area ¢ area+var**2

circ ¢ circ+4*var
3f inish SS must Tiave blank tag
at 1513
i^irite tlie suni of the areas is {s,area}

the sum of the circumferences is {s,circ}

This -doto-loop win be executed four times; when var equals 1, 4, 7,
and 1 Jr. When the current value of the index variable plus the increment
is greater than the final value of the index variable (as specified in the

2-89

.doto-

tag of the -dot a-), the loop is complete and execution continues at the
command following the statement label. In this example, the
-at 1513-is executed. After the loop, the value of the index variable
is undefined.

NON-calc commands are allowed within a -dot a-loop.

The statement label ending the -dot a- ca#7iof contain a -ca I c-
expression. For example, the following statement is illegal:

3finisli vc43 a vc43+I SS ILLEGflL

The statement label of the -dot a- loop must be in the same unit as the
-dot a- statement. The same statement label can be used in different
units because the -dot a-(or -branch-) loops operate only within
units.

When counting how many times a loop is executed:

doto lend,var ¢ lH, l,1 SS executes Jr times
dote lend,var ¢ I,1fl,-1 SS executes # timest3 doto lend,var ¢ 1,1,2 SS execute51 time

doto lend,tar a i. i,ff SS executes indefinitely

You can have -doto-loops within -dot a-loop (nested). For example,
this code will make a table of numbers and their factorials:

dote lentry,nl¢1,7 SS outer loop
calc n3¢l
doto lfact,n2¢l,nl SS inner loop
calc n3¢n3*n2
1 f act
at nl*lff#+255#
shout Tll , 3,JF
at zwherex+ 8 , zwherey

n3 ' 4, H

®

-doto-

The outer loop is executed 7 times and the inner loop is executed n 1
times (n I is the outer loop index and goes from 1 to ?) as part of each
Outer loop.

Several structures of nested -dot a- are legal, such as:

doto 2ending,nl¢1, 3
*
* more Micro PLfiTO code
*
doto 2endiiig,n2¢3, 32, 6
*
* more Micro PLflTO code
*
2ending

2-91

draw 142";1432 SS draws line from 142JF tci 1432
drau- 4#,1fl;4H,aH SS fine or coarse grid ok
draw 2HJr,126;1812;skip;1812+";2flff,126+16
draw ; 172H SS draws from *zwherex*,
* SS *zwherey* to 172H
draw 256,256 SS eciuivalent to
* SS -dot 256,256-
draw placel;place2;xl,yl;x2,y2 SS variables ok

The -draw- command allows you to make a line drawing by specifying
the endpoints of lines. The tags of -draw- are absolute display
locations. They can be either fine or coarse grid, and the two grids can
be nrixed.

Locations are separated by semicolons. The two coordinates of a fine
grid locaLtion are separated by a comma.

Be careful when using *zwherex* and *zwherey* with a Micro
PLATO -draw- comlnand. The variables *zwherex* and *zwherey*
are continuously updated® in other words, they are updated whenever
a display change is made, not just at the end of a command. For
example:

draw i 9JJ5; 1H, 2Jr
draui 125 , 35#; zwherex, zwherey

The second -draw- command is the same as

draw 125,35#; 125,35JFT

Therefore, the second -draw- command will plot a dot at the screen
location 125 , 35#.

2.92

-draw-

It is also possible to draw one line or more and then move to a new
position (sk i p to it) without plotting and continue from there.

Example:

++++

draw 14fla;1815;22JFa;skip; 112,16JF; 18Ha;112,2a8
tttt

Points can be expressed in either fine grid or coarse grid. The x and y
fine grid coordinates are separated by commas. The continued draw
feature will allow you to start drawing from the address current screen
position (for example, *zwherex*, *zwherey*). This is done by
starting the tag of your -draw- with a leading semicolon. For example:

at 2538
write underl ine these words
draw ; 2538

This draws from the end of the whting back to the place at which you
began it, 2 538. The variables *zwherex* and *zwherey* are updated
continuously.

2-93

®

•else-/-elseif-

else es no tag
elseif expre55ion

See the documentation for the -i f - comlnand.

2-94

®

®

enable toueTi
enable ext
disable toucli
disable end
enchle panel
enable mouse

-enable-

SS enable touch panel and/or mouse
SS enable external inputs
SS disable touch panel and/or mouse
SS disable exterrials
SS enable touch panel only
SS enable mouse only

enable mouse,ext SS enable mouse and ext keys

The -enab I e-command prepares the computer to receive inputs from
an external device. The -d i salD 1 e- command turns off the enabling.

The i ouch tag refers to pointing devices such as the touch panel and the
mouse. I^7hen -enabl e touch-is executed and both a mouse and
touch panel are installed in the computer, both are enabled.

The mouse tag refers to pointing devices such as the mouse or the bit
pad (high resolution input devices which utilize a cursor on the screen
to indicate the point where the input takes place).

The pane I tag refers to the pointing devices such as the touch panel
Oower resolution input devices which do not utilize a cursor on the
screen).

When the mouse is enabled, the cursor will appear on the screen,
indicating that the mouse is active. When the touch panel is active, it
will beep when you touch it. When the mouse is disabled, the cursor
will be removed from the screen. When the touch panel is disabled, it
win no longer beep.

The e7ct tag refers to all other external devices (such as serial ports).

Before the user can enter touch input, an -enab I e i ouch- command
must be executed (unless touch input is inside an arrow, and touch
answers are specified, or at a -pause- command and key5=t ouch has
been specified). Remember that -j ump-ing to another unit will disable
touch again.

2-95

-enable-

Before the -bu f fer- command can be used, an -enab I e end -
command must be executed to enable the serial port internipts.

See also the documentation for the -bu f fer-, -i nt rupt -, -xout -, and-x itl-co-ds.

2-96

•endarrow-

endarroui SS Tio tag

The -endarrow- command is reqwi.red to mark the end of a "question
and judging" section that was initiated by an -arrow-. If an
-endarrow- is encountered before a match is found for the student's
response, the resporrse is judged 1.io and the computer waits for the
student to enter another response.

If a match is found, the indented commands that follow the matched
response are executed, then the commands that follow the -i fmat ch-
(if present), and then (if it was ok) control passes to the -endarrow-.
The -enclarroui- marks the arrow "completed." Execution continues at
the first command after the -endarrow-.

See also the documentation for the -arrow- and -i fmat cli-
co-ands.

2-97

rendif-

end i f SS Tlo tag

See the documentation for the -i f - command.

2-98

•endloop.

2-99

end1oop SS rlo tag

See the documentation for the -I oap- command.

®

-erase-

erase es ful I -Screen erase
erase n SS erase "n" characters
erase chars, lines Ss multi-line erase
erase xl,yl;x2,y2 es area erase, fine grid only

The -erase- with no tag causes a full-screen erase.

A one-tag -erase- erases the number of.characters specified by the tag,
beginning at the current screen position. If the tag is negative, a full-
screen erase will be produced.

A two-tag -erase- erases more than one line. The second tag specifies
the number of lines to erase, and the first tag specifies the number of
characters on each line that should be erased® If the first tag evaluates to
a negative number, a full-screen erase will be produced.

A four-tag -erase- erases the specified rectangular area of the screen.
The area is specified by two pairs of x and y coordinates separated by a
semicolon. Coordinates "#sf be specified in fine grid. The specified
area is erased to the current background color.

After an -erase-, the screen position (*zwlierex*, *zwherey*) is Set
to the position where the -erase-began.

Note that when using the -erase chars , I i nes-form, if you specify
an area to be erased that extends off the display, unexpected areas of the
display could be erased.

2-100

-exact-

exact 3 : 5
exactw 3;5
e?tact es blank tag form
exact {a,buff(i) ,bufflen} SS embedded formi

An exact character-by-character match of a response can be done with
the -exact - command. For a response to match an -exact -
command, each character the student enters must match character for
character the tag of the -exact - command. This includes spaces,
capitals, aLnd punctuation marks. So a response of 3 : 5 does not
match the above -exact - command because of the extra spaces. The
user would have to type exactly the characters 3 = 5 in order for the
above -exact - comlnand to be matched. Likewise, the user would
have to type exactly the characters 3 ; 5 to match the above -exact w-
co-and.

The only response that will match an -exact - command with a blank
tag is a response of just a ;itcey. Be sure to include an -a 11 ow b I ank5-
if the blank tag form of the -exact - command is used.

The embedded form of the -exact - command is similar to the
embedded form of the -ansuer- command. It will match the response
if it is identical to the characters in the buffer specified in the tag of
-exact -.

2-101

-exactw-

exactw cat

The -exact w-command is used to match wrong responses, in the same
way that the -exact - command matches correct ones.

In the above command, the response will be judged wrong if the user
types exactly cat .

See also the documentation for the -e7<act - command.

2-102

.file-

fi le create; data5et , name, numrecs, unit
fi le create;data5et , Pouf(1)) , ",ff
fi le create;data§et ,myfi le,varl ,var2
fi le destrey; clataset , nape, unit
fi le de5trey;dataset , (buf (1)) ,var2
fi le rename; ddt aset , olchame, newname, drive
fi le name; dataset , fname, fdrive

The - f i I e- command can be used to create, destroy, and rename
datasets (also known as files) on a disk. The -f i I e name- command is
used to find out the name of the currently attached dataset.

The - f i I e creat e- command has the following syntax:

fi le create; dataset , myfi le, riunirecs, 0

first tag The creat e keyword, followed by a
senricolon.

second tag Must be the word dad a5et.

third tag Dataset name; 1 to 8 characters long. If you
use a variable, enclose it in parentheses. The
variable must be at least 10 bytes long and
zero filled. Only letters and numbers are legal
characters in file names.

fourth tag

fifth tag

Number of records. The record is the unit of
storage for datasets. Each record is 128 bytes
long.

Number of disk drive (0 through 9). See the
Setting Up Your Configuration sechon of the
MPAS user's guide for more information.

The dataset is left open in read/whte mode after it is created.

2-103

-file-

The -f i I e dest roy- command has the following syntax:

fi le destro>+;dataset ,myfi le]O

first tag The dest ray keyword, followed by a
sendcolon.

second tag Must be the word ddt a§et.

third tag Dataset name; 1 to 8 characters fang. If you
use a variable, enclose it in parentheses. The
variable should be at least 10 bytes long, zero
filled. Only letters and numbers are legal
characters in file names.

fourth tag Number of disk drive.

The format for the -f i le rei'iame-command is:

fi le rename; data§et , ol dTiame, newname, drive

first tag

second tag

third tag

fourth tag

fifth tag

2-104

The rename keyword, followed by a
sendcolon.

The dat aset keyword, indicating that the file
to be renamed is a dataset.

Name of the file to be renamed. If you use a
variable, enclose it in parentheses. It must be
at least 10 bytes long and be zero filled.

New name for the file. If you use a variable,
enclose it in parentheses, following the same
rules as above.

The drive on which the file resides.

•file-

The -f i I e Tiame- command reports the name of the currently attached
dataset. Its format is:

f i le Tiane; dataset , fTiame, fdrive

first tag

second tag

third tag

fourth tag

The name keyword, followed by a semicolon.

The dad aset keyword.

The variable that will receive the name of the
dataset. It must be at least 10 bytes long. It
must be a storable and an eight- or sixteen-bit
variable. A good definition is

define i,8: fname(l#)

The variable to receive the drive number
where the dataset was found. It must be a
storable variable (of any type).

If no dataset is attached, *zret urn* is set to 17 to indicate that the
-f i I a Tiame- command failed.

After a -f i I e- command is executed, *zret urii* is set to:

-1 If operation successful.
1 If error with reading from disk.
2 If error with writing to disk.
3 If system error (master-dear error).
4 If disk drive unit is not responding.
5 If the file name was not found (for destroy or rename

only). May also mean that someone else had a file open
when a -f i le rename-was executed.

6 If duplicate file name exists (for Great e or rename only).
7 If one of the -fi le-arguments is illegal.
8 If insufficient disk space (for creat e only).
9 If diskette format is bad.
10 If system error (data sum-check error).

2-105

-file-

11 If system error (seek error)a
12 If too Inany ffles are openo This limit might be reached if you

have six library lessons and you try to do an -at i ach-.
13 Uhimplemented command (this should never occur).
14 Access violation (tried to destroy a file someone else has

open).
17 No datasetwasattached during a -fi le riane-command.

ExamDles of the -f i le-command

The fouowhg line

fi le create;dataset ,animals,15,JF

will create a dataset called animals . dat.

NOTE

Contents of datasets are undefined when they
are created.

The dataset animals . dat will contain ¢f Zc#sf 15 records. (Since
records are accessed from the disk in groups, the dataset size is always a
multiple of the number of sectors accessed.)

The dataset animals . dat will be created on drive 0. See the Sc££}.7zg up
Yowr Co7ifi.g#rfl£!.o7i section of the MPAS user's guide for more
information.

The following line

fi le destroy; dataset ,animals,#

will destroy the dataset called animal s . dat .

2-106

-file-

Example: Using vaLriables for the third, fourth, and fifth tags.

The following code will create a dataset called my f i le . dat that will
have at least 20 records.

define i,8:buf (leo SS buffer should alloi^i for "
SS cliaract era

i'iumrec SS i'iumber of records
drive Ss disk drive

*
*
unit
Zero
ca1c

pack
file
do

create
buf(1) ,1# es zero buffer
nunrec € 2JF
drive ¢ 0
bu f (1) S S my f i I e
creat e ; ddt aset , tou f (I)) , numrec , dr i ve
z ref urn , x , error

2-107

-fill-

fi I I corTierl ;corTier2 es opposite corTier5 of
*
fill
fill
*
fill

SS rectangle
xl,yl;xl,yl es fine or coarse grid
;corner2 SS cornerl = *zwherex*

SS *zwherey*
SS blank tag form

The - f i I I - command either fins or erases a rectangular area.

If the terminal is in -mode wr i i e-or -mode rewr i + e-, the -f i 11 -
command fills in the specified area (all of the dot locations within the
rectangle are tuned on). If the teminal is in -mede erase- or
-mode i nverse-, the area is erased (all of the dot locations within the
rectangle are turned off). The -f i I I - colnmand does NOT affect the
zwherex and *zwherey* Positions.

The tags of - f i I I - specify diagonally opposite comers of the area that
should be written or erased. The comers m#sf be separated by
semicolons. If the first tag (corner) is omitted, the current display
position is used as one comer.

The blank-tag fom` of the - f i I I - command fins the entire screen
(equivalent to -f i 11 D,17; 511, 511 -).

2-108

-find-

find obj ect , start: ,1eTlgth, return

The -f i nd - command makes variable-by-variable comparisons through
a series of variables to find the character or number specified in obj ect .
The - f i nd- looks at the entire variable.

The first tag contains the obj ect of the search. It cannot be a literal; it
must be a variable.

The second tag specifies the first variable st art in a series of variables
that will be searched. The st art variable can be an 8- of 16-bit integer
or a floating point variable, but it must be the same type variable as the
obj ect .

The third tag I engt h specifies the number of variables to be searched.

The fourth tag ref urn gives the position within the list of the first
matching variable found, with st art counting as position 0. If no
match is found, return is set to -1.

2-109

-force-

force I ong
force font
force
force
force
force

Caps

long,caps
left

ee blank tag

The - force- comlnand is used to alter default features of Micro
PLATO judging. Available tags are: long, font , caps, and left .

The -force I ong- initiates judging as soon as the student has typed
the maximum number (I ong) of characters allowed. For the first
attempt at an anow, this maximum number is set by the last tag of the
-arrow- itself. For subsequent trials, the value of 1 ong can be modified
with the -I orig- command.

In the example below, up to 50 characters can be entered in the student
response. If the answer was incorrect, subsequent answers would be
restricted to three characters.

arrow lJJ10;char (1) ; 50
answer cat

at 18lJr
wr ite GREfiT !

TIO

at 18lJr
write Tr}/ F]gain

*
I ong 3

endarrow

When an -arrow- is initiated, it causes I ong characters to be zeroed in
the specified buffer. If a -1 ong- command increases the length of the
buffer, those extra characters are zeroed when the -1 ong- is executed.

2-110

-force-

A - force font - inserts a FONT as the first character in the string. If
FONT is the only character in the buffer when the -j key- is pressed, the
FONT is deleted.

A -force caps- causes each input from 4! £ferotfgJ! z to be a capital
letter. A shift code is inserted in the student string.

A -force- with no tag clears the current -force- setting.

Entering a new main unit also clears -force- settings.

The -force- setting can be changed while at an -arrow-. In the
example below, judging will start after one keypress on the studcht's
first try. For subsequent responses, judging will start after the student
enters four keypresses.

arroi^i lJFlfl; chars {l) , I
force I ong

long
answer
answer dog
endarrow

The -force I eft -command will implement leftwards whting. This
refers to text that starts with a <shi ft cede> " ; the characters are
displayed from right to left. A <shi ft ced€> is generated by
pressing SHIFT-¢.

Characters are displayed from left to right, as is normal, when the text
starts with a <shi ft code> I. The blank-tag -force-command will
select normal writing.

2-111

•gat-/8atrm-

eat x, y
Sat 75 ,1JrJJ
gatrm x,y
gatrm 3g' 4JJ

A -gal - command is similar to the fine-grid -at - command, but is
instead relative to the -gor i = i n-. If no -sea I ex- or -5ca I e}+-
commands have been executed, it locates a screen position x dots to the
right of and y dots above the origin for subsequent writing. The -gat -
establishes a left margin (just as the -at - does).

In the presence of -5ca I ex- or -sea I ey- commands, the x , y tags of
the -gat - command will be considered to be in scaled units and
automatically converted for subsequent writing. In Micro PLATO there
is no default scaling, so a -sea 1 ex- and a -sea I ey- must be used
before the -Eat -.

The -gat rm-command does alter *zwheT-ex* and *zwherey*, but
does not reset the left margin for continued lines of the display. Rather,
continued lines are aligned with the margin set by a preceding -Eat - or
are set by default to the -gor i g i n- in graphing coordinates.

2-112

-gbox-

gbox xmin , ymi n; xmax, ymax
gbex xmin , ymi n; xmax , ymar; thi ckness
gbox -2jF, -2Ir; i4jF, i2H
gbox -2H, -2Ir; i4H, i2fl; 5

The -gbox- command with tags draws a box touching the xm i n , yin i n
and xmax , ymax locations specified in the tags.

The optional i li i ckneEs tag on the -gbox- specifies the number of
lines or dots thidc the walls are to be. Positive values will build the wall
up in an outwaLrd direction; negative values build it up in an inward
direction.

Thickness values of - i , Ir, I , and blank (none given) all specify a box
wall one line thick. Thicknesses greater than 5" cause an output buffer
full error.

Note that it is legal to draw outside the boundary.

2-113

-gcirde-

gcircle radius SS circle
gcircle 15
gcircle radius,anglel ,angle2 es arc
gcircle 15,3#,15JF

The -gc i rc I e- command will draw a circle or arc with the center as
the location set by the previous -gat -or -gatnm-. If no -gal -or
-Sat nm-is provided, the center will be at the location of *zwherex*
and *ziwherey*. The size of the circle is determined by the radius given
¢77d by the -axes-and -§calex-and -scaley-that are in use.

The variables *zwherex* and *zwherey* remain at the center of the
whole circle form and are reset to the last point drawn on the
circumference for the arc form.

The -gc i rc I e- command draws circles or ellipses.

If the x and y scales differ, ellipses are drawn.

Note that due to differences in the additional machinery needed for
scaling in -gc i rc I e-, the resultant circle is not exactly the same circle
as that produced with the -c i rc I e- command.

Circles and arcs of large radius (i.e., >10,000 pixels) may not plot
correctly on all video displays.

2.114

®

®

-gdot-

gdot x,y SS fine grid

® The -gclot - command nghts a single dot on the panel at the location
named in the tag of the command relative to the preceding -gor i g i n-.

A -gdraw- command with the same tag will produce the same display
as a -gdot -, but -gdot - is faster.

2-115

-gdraw-

gdraw xl,yl;x2,y2;x3,y3;x4,y4
gdraw ;xl ,yl

The -gdraul- command is much like the -draw- command: it draws a
line from x i, y I to x2 , y2 (to x3 , y3...and so on), but the x , y's are
relative to the origin specified in the -gor i g i n- command.

The maximum nulnber of arguments for a -gdraw- is 6 3 .

The 5k i p tag can be used to draw unconnected lines.

Micro PLATO requires that -5ca I ex- and -sea I ey- must be set
before the use of this command.

2-116

Tgetchar-

getchar char#, buffer

The -get char- command copies the description of the character in the
slot number given by the first tag (char#) from the portion of memory
where the charset is stored. It copies this description into eight
consecutive 16-bit pieces, starting with the variable named by the
second tag (bu f fer).

Each 16-bit piece describes one vertical column of the character, reading
from left to right. The format is just like that used with the -char-
comlnand. The first tag (char#) may be a variable or a literal. The
second tag (bu f fer) must be an integer; it may be either 8 or 16 bits, as
long as a total of 16 8-bit fields is allowed.

2-117

-getkey-

getkey es no tags

The -get key-command is used to retrieve the *zkey* value of the key
that has been stored for the longest time in the key buffer. When
-get key- is executed, it removes the key from the key buffer, and
zkey is set to that key's value. If there are no keys stored in the key
buffer, *zkey* will be set to -1.

See the documentation for the -c I rkey- command for a description of
the key buffer.

2-118

-8etloc-

getloc argl,arg2,arg3
get loc argl ,arg2,arg3, (arg4) , (arg5}

®
The -get I oc- command returns the starting screen coordinates of a
word in the student's answer, and optionally, the coordinates of the first
location following the word. The command is only executed in answer-
contingency mode (that is, after matching a response-judging
co-and).

argl

arB2

arg3

ar84

ar85

number of word whose location is desired

starting x location of word (fine grid)

starting y location of word (fine grid)

ending x location of word (optional)

ending y location of word (optional)

If the desired word is out of bounds, that is if arg 1 is greater than the
number of words in the student answer, arg2 is set to -1.

Examples:

getloc 2,a,b SS puts the startiTig x,y screen
* es coordinates of word 2 in
* SS variables a and b
getloc 2,a,b,c,d SS also puts endiTig coordinates
* SS of the word in c and d

2-119

•getloc-

Here is an example use of -get I oc- that underlines all words in the
student answer:

define i,8= word,buff (3JJ)
i,16: xl,x2,yl,y2

*
un it test
arrow "lJr;buff {l} , 3fl
ansuer the Tiouse has a green
doi:a I , word¢ I , zwcount
getloc word,xl,yl,x2,yl
*
draw xl,yl;x2,y2
I

endarrow

2-120

S$ 16-bit variable5 best
SS for coordinates

door
SS eacli word of rE5poTise
SS get Starting and
SS ending x,y
SS underl ine each word

-8etmark-

getmark tagl ,tag2

The -get mark- command is used after judging a student answer to
return information about the words within the student's response. It
gives the author detailed information about each word of the response.

tagl

tag2

-2

-1

The number of the word, within the response,
about which detailed information is desired.

Returns information about the specified word.
This tag must be a 16-bit variable. The values
returned in it are:

No markup possible (for example,
response was perfect, or there was no
-answer - command)

Word out of bounds (for example, i ag 1 is
greater than the number of words in
student response)

Perfect word

Detailed markup information. The bits in
the return variable are set to indicate the
result. The bits are numbered from left to
right, from 1 to 16 (that is, the high order
bit is 1 and the low order bit is 16).

bit 16 (right-most bit) set if a word
is missing just before this word

bit 15 set if word out of order (move
it left)

bit 14 set if capitalization incorrect

2-121

-8etmark-

bit 13 set if bad spelhig

bit 12 is not set

bit 11 set if extra word

bit 10 set if this is the last word of
response and there is a
missing word at the end

The example below shows how information in the return word (the
second tag) can be tested and used.

define index,return,bits
i,a: buffer(5fl)

un it exap le
arrow 1216;buffer(i) , 5fl
an5i^ier Five horses and three coi^i5

*

answer
no

*

2-122

l^irite You must live on a farm!
if atlslwer is not matched, i:hese lines
are execut ed:

doto 1, index¢l , zwcount

getmark index, return
at 1515+lH#*index
write word {5, index}

dote 2,bits¢16,1#,-i
calc temp¢ (return sclss
brancli temp=JJ, 2,x
writec 16-bitsSS

SS loop i:hru student
es words
SS get mark-up info.

SS show word
returning on
SS test each bit
bits) Smasks I

word missing before this l^lord
this word Should come earliers
bad capital izat ionS
spel I ing errorSS
SS remember, bit 12 is not set

-8etmark-

2-123

end ra wordS
missing word at end of responseSS

endarrow

-8fill-

grill xlocl,ylocl;xloc2,yloc2
gfi I I -2ff, -5jr; iiFjF, i2jF
gfi I I varl ,var2;var3,var4 es variables ok

The -g f i 11 -command is similar to the -f i 11 -command. It will fill in
or erase a rectangular area relative to the current graphing commands
(such as -gor i g i ri-, -sea I ex-, and -5ca I ey-).

The tags of the -g f i I 1 - command specify the two comers of the area to
be filled in or erased. The comer locations are relative to the
-gor i g i n- and other graphing commands. The two locations should
specify opposite comers of the rectangle.

If the terminal is in -mode wr i i e- or -mode rewr i i e-, the rectangle
is filled in. The rectangle is erased if the terminal is in -mede erase-
or -mode inverse-.

The -g f i I I - command is not affected by the -a i ze- and -rot at e-
co-ands.

2-124

-8Ori8in-

gorigin x,y
gorigin 7ff ,1JrH
gorigin 15Jr

The -gor i g i n- command specifies a screen position for a point called
the origin. The arguments of all other graphing commands (such as
-Eat -, -gc i rc I e-, -gbex-, and so forth) are relative to this origin.

The fine grid version -gor i g i n x , y- specifies the origin position in
screen dots to the right of and above the lower left hand comer of the
screen.

The coarse grid version tag is ((100 * rows) + columns) where rows are
numbered from 1-32 down from, and columns are numbered from 1-64
to the right of, the upper left comer of the screen.

In Micro PLATO, a variable cannot be used as the coarse grid version
tag:

gorigin x,y
gorigirl 1612

SS variable5 may be used
SS MUST be a constant

In Micro PLATO, there is no default value for -gor i g i n-. If
-gor i g i Ti-is not specifically set, the position of the origin is undefined.

2-125

®

-goto.

goto unitname SS uncondil: ional form
goto expr,unitneg,unit#,x SS condit ioTial
goto Sub (", 2, 3. 4) SS pass arguiiiient5

The -got a- command causes an immediate transfer to the unit named
in the tag. There is no return to the commands that follow the -got o-
statement. When control is transferred with -got a-, the current main
unit is not changed.

it calc
rd sub5ome

I JF 1 JF

ite some display
to attachu
ite never displayed

it attachu
complete main unit "calc"

i i anot ller

Unit ca I c is completed in unit at i acliu. When the student presses
NEXT, unit 5ub5ome will be executed.

The -u.r i i e Tiever d i sp I dyed- will not be displayed because there is
no return to the commands following the -got a- (unlike the -do-).

Conditional -got a-s

goto e?<pr,unitTieg,unit 1 ,x
goto Sub(",2,3.4) Ss pass argumeTits

The -got a- comlnand is often used in a conditional form. Based on
•some expression, the current unit will be continued in one of several

2-126

-8Oto-

The -got a- command is often used in a conditional form. Based on
some expression, the current unit will be continued in one of several
units. To "fall through" the -goto-to the following commaLnd, use an x
in the tag instead of a unit name.

Arguments can be passed to the executed unit with -got o-.

The -got a- command does not alter the -do- or -j a i n- levels. Also,
the -got a- does not change the main unit.

The -got o- command is not permitted within the arrow structure. In
other words, a -got a- after an -arrow- and before the corresponding
-eTidarrow- will cause a condense error.

If a -got a q- is executed in a main unit, processing will stop for that
unit. Micro PLATO will wait for the student to press a function key and
branch accordingly.

If a -got a q- is executed in a unit reached as a result of a -do- or
-got a-, Micro PLATO will "back up" one -do- level (return to the
caner).

unit
i write

do
5 Lurite

*

unit
2 write

do
4 write

*

unit
3 write

goto
wr i i e

one
some tend
attacha
after -do- in "one"

at t acha
in unit "attaclia"
attachb
after -do attachb-

at i achb
in unit "attachb"
express , X , 5omeun i i , q , someun i i
after condit ioTial -goto-

2-127

-goto-

The numbers (I + 5) to the left of each -wri i: e-command indicate the
order ofexecutionifet<pre§s = 1. The -goto q-inunitattachb
backs up one -do- level and execution continues from that point.

2-128

-gvectoI-

8yector x,y
gvector JJ,fl;x,y;size SS H,JF with size
gvector xH,yJr;x,y
gvect or XJJ , yJF ; x , y ; heads i z

The -gvect or- command with two arguments in the tag will draw a
vector with its tail at the current origin and a triangular arrowhead
pointing to location x , y. A four argument -gvect or- will have its tail
at location xH , yH instead of the origin. All tags must be in fine grid.

The optional headsize argument specifies the size of the arrowhead.
The default size of the arrowhead is 1 fl dots; if the vector is very short,
the headsize is smaller. Headsize > I specifies arrowhead size in screen
dots. Headsize < I specifies arrowhead size as a fraction of the total
length of the vector. A negative size causes an open barbed arrowhead.

The -sca I ex-and -sea 1 ey- commands must be executed before the
use of this command.

2-129

®

-hbar-

1lbar x , y
vbar x, y

The bar graph commands will draw a vertical or horizontal bar from the
appropriate axis to the point specified. Units are scaled when necessary.

For a -vbar-, x is the position of the center of the bar along the x axis, y
is the height of the bar; both in scaled units.

For -hhar-, x is the horizontal position of the end of the bar, and y is
the vertical center of the bar; both in scaled units.

The bar graph commands will draw a vertical or horizontal bar,
respectively, from the appropriate axis to the point specified. Units are
scaled when necessary.

Exalnple of -vbar-and -Tibar-:

gor i g i n
axes
Pause
vbar
hbar
hbar

3 J7 3 2
2EH , 2HH
SS press NEXT
1 5JF ' 5Jr

1 iFiF , 1 aJr
-ZH ' , idJ3

2-130

®

-help-/-helpl-

help a idone
helpl delme
data sound, quack, honk, x, woof , oiTik, q
datal wco f
I ab i ryme
labl var-2,expt I ,x,expt2
helpl unitx

These commands specify units to transfer control to when the HELP,
SHIT-HELP, DATA, SHIFT-DATA, LAB, and SHFTr-LAB keys are pressed. A
help sequence is initiated if one of these six keys is pressed. When a
help sequence is completed, or when the student presses BACK or SHIFT-
BACK, the student returns to the unit from which the help-type key was
pressed. This unit, to which the student is returned, is called the base
unit.

A unit that does not have an explicit -next - terminates the help
sequence.

In the conditional forms of these commands, x means "do not change the
pointer," q means "clear the pointer."

Pressing a help-type key when in a help sequence will branch to a new
help sequence, but the base pointer will not be reset. So, if BACK or
SHIFT-BACK is pressed, the student will return to the original base unit.
Likewise, a -j ump- in a help sequence will not reset the base pointer.

2-131

-ianow-

1arrow
iarrow
i aTTOW

un i t name
expr , un i i meg , q , un i t one , un i i i wo , x
q SS "q" clears previous setting

The -i arrow- command causes the unit named in the tag to be inserted
with an indented -do-immediately after each -arrow- command
when first entering that -arrow-.

The -i arrow- is cleared when a new main unit is begun. A later
occLirrence of -i arrow- in the same main unit will override any earlier
setting. An -i arrow- with a q tag cancels the -i arrow- unit.

An -i arrow- command typically precedes the first -arrow- in a unit
(although it can be useful if inserted later in the unit). Altematively, it
often is used in an - i rna i n- unit.

Unit i arroun is inserted with a -do- immediately after the -arrow-:

uni i test
iarrol+J iarrot^iu
arrow lfll5;buff (i) , 2#

do iarrowu)
ca lc zonk¢ I

insuer toink red] clouds
i^irite very good !

endarrow
etc, , ,

2-132

-if.

if
*
e I 5e i f
*
else
*
end i f

express i on
execu+e indented code
expre5= i on
ei{ecnte indented code

execute indent:ed code

The tag of the -i f - command is a logical expression (see -ca I c-). If
the expression is true, the indented code that immediately follows the
-i f - command is executed. If the expression is false, execution
resumes at the next -end i f -, -e 1 se-, or -e 15e i f-command that is at
the same level of indenting as the original -i f -. The -i f - command
must be followed by some indented code or by an -e 15e i f -, -e I se-,
or -endi f-.

The -elsei f-command also has a logical expression as its tag. It will
be evaluated if the preceding -i f-or -el 5ei f-was false. The
indented code that follows the -e 1 se i f - will be executed if the
expression is true and skipped if it is false. An -e I se i f - must be
preceded by an -i f - (though another -e I se i f -may intercede) and
cannot be preceded by an -e I se- or -end i f-.

The -else-command has no tag. The indented code that follows the
-e I se-will be executed unconditionally when preceding -i f - and
-e i se i f - expressions are all false.

Example:

i f kval=45
do Space
ca I c char¢jr

k¢k + I
elsEif kval<37

do a I phanum
if kval<27

SS done if kval=45

SS done if kval<37
SS done if kval<37

do alplia SS done if kval<27

2-133

-if-

else
do ilLrmber SS done i f 27±kval±36

end i f
elseif kval=41

do I paren
el5eif kval=42

do rparen
else
. wr ite bad character
endi f
*

es done if kval=41

SS done if kval=42

SS done i f kval not
SS previously
SS accounted for

The indented code that follows an -i f-, -e I se i f -, or -e 15e-
command can contain any executable regular command (-arrow- and
other judging commands cannot be indented, nor should condense-time
commands,like -de f i ne-and -c5t op-, be indented).

2-134

-ifmatch-

i f mat ch

®

®

endarrow

SS no tag
at 1823
writec zjudgedSGreat !STry again.
ca I c count ¢count + i

The - i fmat ch- command allows specific lines of code to be executed
every time a response is matched by an answer-judging command. The
lines following an -i fmat cTi- command are executed if the student's
response has been matched by an answer-judging command (this
includes tio judgments) and if the value of *zj udged* is not equal to 2
at the end of the indented code following that answer-judging
command. This command eliminates the need to place the same lines of
code in several different areas of the -arrow- structure.

After the execution of the - i fmat ch- lines and an ok judgment, control
goes directly to the -enclarrow-. After the execution of the -i fmat ch-
1ines and a no judgment, Micro PLATO waits for the student to enter
another response.

Each -arrow-/-endarrow- section can contain only one -i fmat ch-
command and the -i fmat ch- command can only occur within the
-arrow-structure. The -i fmatch-can never be indented. Every
command between the -i fmatch-and the -endarrow-must be
indented. The -i fmatcli-command can be considered as a series of
-brancli- commands, where one -branch- command would be
inserted as the last indented line following each answer-judging
command. The following -arrow- structures are equivalent:

arrow 3lJF;reap (1) ,11
ansuer dog

at I JFIJF
wr i i e bow-wouj

urong cat
at 1#lfl
write No, wrong animal.

TIO

2-135

-ifmatch-

. at lfllJJ

. write Nope.
i f mat ch

calc wkl¢wkl +i
eirdarrou

arroi^1 3lfl;reap (I) ,11
ansuer dog

at lff lH
Lur i i a boi^i-i^iow
brancli JJi fmatc

urong cat
at lff lH
unite No, i^mong animal.
brancli Hi fmatc

TIO

at 1 JFIJr
wr i te Nope.
braTich fli fmatc

Ja i fmat c
branch zjudged=2,lend,x
calc wkl¢wkl+1
lend
endarrou

Note that *z j udged* is set to 1 if a -Tio- command is executed, but it is
set to 2 if no answer-judging commands are matched. So, if a -no-
command is executed and the value of *z j udged* is not changed to 2,
the -i fmat ch- will be executed. However, if a -no- command is not
included and none of the other answer-judging commands are matched,
the -i fmatch-will not be executed. For example:

arrow 3";reap(1) , ll
an5uer dog

at l"ltr
wr i i e bow-wow

TIO

2-136

-ifmatch-

2-137

at lJrl#
ur ite Nope,

i f mat ch
calc wkl¢wkl +1

eTidarrow

(-i fmat ch- win be done for rio judgment)

arrow 31Jr;reap(I) , i I
an5uer dog

at lJJlg
I^ir i i e bouJ-wow

i f mat ch
calc wkl¢wkl+1

endarrow

(-i fmat cli- will not be done for ne judgment)

-ijudge-

i j udge un it"ane
ijudge expr,unitneg,q,unitone,unittwo,x
ijudge q SS ''q" clears previous setting

The -i j udge- command causes the unit named in the tag to be inserted
with a -do- as the first non-indented command following an -arrow-
each time the student presses NEXT (or any other j ke}+).

The -i j udge-is cleared when a new main unit is begun. A later
occurrence of -i j udge- in the same main unit overrides any earlier
setting. An -i j udge q- cancels the -i j udge-unit.

An -i j udge- command typically precedes the first -arrow- in a unite
Altematively, it often is used in an -i rna i n- unit.

Uhit i j uclgeu is inserted with a -do- immediately after the indented
post -arrow- commands.

unit
i j udge
arrow

do
ca1c
ansuer

*

test
i j udgeu
lH15;buff (1) , 2#
calc trial¢J,
i j udgeu
i r i a I ¢t r i a I + I
beiTik red] clouds
i^irite very good !
etc® 1,

On-the-page HELPs in Micro PLATO

There are no on-the-page help-type commands in Micro PLATO.
However, it is possible to make a close approximation of one at an
-arrow-by making HELP be a j key and then -do-ing the help unit
whenever the key pressed was the HELP key.

2-138

-ijud8e-

The main problem in this approach is that it requires an
-a 11 ow b I arks-. Often the author would prefer not to allow blank
responses. The following code illustrates a way to make it (reasonably)
convenient to simulate an on-the-page help and at the same time
prevent the student from getting a no when NEXT is pressed at a blank-arrow-.

imain maim.I SS put -imain-command in first
unit
*
unit quest ion es example of "on-page
help"
* the te?ct and question would go here
arrow 273a;buff (I) , 2fl
i f zke}/=zk thelp)

do qhl SS -do-tlie help unit
judge exit

endi f
do erasunit SS do any erasing liere
answer this i5 the f irst desired ai'iswer
endarrow
*
unit mainu
* these 3 units set up "jkeys"
allow blariks SS and mimic .I inhibit
b I aTlks "
iarrow iarroi^iu
ijudge ijudgeu
*
un i i i arrowu
j key help SS could also liave fiNS,

DF]Tfl, etc.
*
unit i j udgeu
i f zjcount =H

i f zke)/i±zk the lp)

end i f
endi f

j udge exi i

2-139

-imain-

imain mymain
imain expr,mymain,runTiain,mainl SS condit ional
imain q es clears previol.L5 setting

The unit named in the tag of an -i rna i n- command will be inserted by a
-do- at the start of every main unit in the lesson. The -i rna i n-is in
effect for all units executed after the unit that contains the -i rna i Ti-
co-and.

A unit becomes a main unit when a -j ump- command is executed to
jump to it.

An -i rna i Ti- command with a q in the tag will turn off this feature. A
later occurence of -i rna i n-will override any earlier settings.

One common use of -i rna i n- is to specify the help-type keys that are to
be active throughout the lesson.

The -i rna i n- must be inside a unit. It is commonly placed in the unit
that is always executed first.

A unit executing as an -i rna i n- unit cannot return arguments with the
-ref urn-command. Attempting to do so will cause unpredictable
results.

2.140

-inhibit-

inhibit arrow, blanks
inliibit erase
inTiibit jkeys
inhibit lke}+a es for "inhibit local keys"
inliibit plato,ke}ffi
inllibi± SS returns to default sett ings

0

The - i nh i b i i - command prevents an action that would normally
occur. The - i nh i b i i - settings are cumulative; each - i nh i b i i -
comlnand adds to the previous settings. Individual settings can be
cancelled with the -a 1 I ow- command.

All - i nh i b i i - settings are cleared when a new main unit is entered or
when an -i nh i b i i - command with no tag is encountered. The default
settings are equivalent to these two statements:

allow arrow, erase, ke}/a, plato, jkeys, lkey5
inliibit blanks

The tags for - i nh i b i i - are:

arrow

b 1 ank5

erase

Do not write a » on the screen when an
-arrow- command is encountered. An
-inhi bit arrolAi-statement can either
precede the arrow it is to inhibit, or it can be
included as an indented statement before the
first exdented command.

Do not initiate judging if the student presses
any jkey at an arrow without entering a
response. Note that the default at the arrow is
-inhibit blanks-.

Do not do a full-screen erase when moving
from one main unit to another.

2-141

-inhibit-

keys

j keys

plato

1keys

No key can break through the -pause-
co-and.
Prevents the appearance of a j key that is
normally displayable (like a non-function key).
It will not store the key as part of the input
string.

Do not process output from the CPU. Output
from the CPU is held until an - i nh i b i i - with
no tag or an -al low plato-is executed. It is
possible to lose output, but only if processing
is halted for a I ong time.

This tag forces all keyset, touch panel, and
external keys to be sent only to the central
system. Keys are not available through the
Micro PLATO *zkey* reserved word, nor will
they interact with Micro PLATO -arrow-,
-pause-, -next -, or other Similar commands.

Usually, after executing an -i nh i b i i lke}+i-command, the Micro
PLATO lesson will use the *zdat a* reserved word and the -rece i ve-
colnmand to receive information from a central system lesson. The
-i nh i b i i I keys- will remain in effect until the end of the lesson or
until an -al lou lke}+a-is executed.

The Micro PLATO lesson will be able to execute an -al low lkeys-
command to enable local key processing. Keys will then be handled
normany.

2-142

®

®

®

-intrupt-

intrupt unit
intrupt (condition) ,unit,unit,x,q

®

The - i nt rupt - colnmand specifies which unit to execute, as though
by -do- command, when an intermpt is received from the serial port
data charmel.

After declaring an - i nt rupt - unit, you must explicitly enable external
interrupts in order to activate the interrupt mechanism. External
intemipts are enabled by executing an -enab I e ext - command and
an -xout - command.

After the intermpt, serial channel intemipts are disabled until the lesson
executes an -enable e><t -and an -xout -command. These
commands should be the last two commands in the unit specified by the
-i nt rupt - command.

An intermipt will not break through a -pause- or -arrow- command.
The unit specified by the - i nt rupt - will not be executed until the
Micro PLATO executor is ready to process the next command after the
-pause- or -arrow-.

If your terminal has multiple serial channels, you must have interrupts
enabled for only one channel at a time.

See also the documentation for the fonowing commands: -x i n-,
-xout -, -enab I e-, -d i gab I e-, and -bu f fer-.

2-143

-jkey-

arroui lfflH; chars (i) , 4JF
. I.ke}+ back, labl ,a,b

The -j key- command specifies which keys, in addition to the NEXT
key, will initiate judging. In Micro PLATO, any key that can break a
-pause- can be used to start the judging procedure. Defined lists of
keys, either system defined lists like a I I , or lists defined with the
-keyl ist -command, can be used with the -j key-command. (The
key that initiates judging is often called the j key.)

Each -arroui- command clears any previous -j key- settings and sets
NEXT as the only j key. Thus, the -j key-must appear as an indented
command after each -arrow-that requires special i keys.

The -j key- settings can be changed. In the example below, the j keys
for the first response win be NEXT , a , b , c. For all later responses, the
j ke}+a will be only NEXT and BACK.

arrow lJFIJF; chars {l). 4fl
jkey a,b'c

j key back
ansuer dog
endarrow

A j ke}+ that is not a function key will be displayed on the screen as the
last character of the response before judging is initiated. The response
buffer will contain the j key. To prevent this behavior, use the
-inhibit jkey=-command.

2-144

®

®

®

-jkey-

In the following example, a response of dog fouowed by a (that is
specified as a j key) will display doga at the arrow and the response
will be judged .no. The command -answer doga- must be added in
order for it to be judged ok.

arrow lJnJr; cliars (I) , 4fl
jkey a,b,c

aiisuer dog
endarrow

2-145

•judge-

judge flo
j udge (expr) , ok, i^irong, no, exit , ignore, x
judge (expr) ,x,okquit ,noquit ,quit
j udge (expr) , exdent , unj udge

The -j udge- comlnand is used to alter the Micro PLATO judgment of a
response. After a judgment has been made as a result of matching a
Command like -aTiswer-, -wrong-, or -ok-, that judgment can be
altered with the -j udge- command.

Perfussible tags are

exd ent okquit
exit quit
ignore unjudge
no wrong
noquit x
ok

The value of the system defined variable *z j udged* is modified by the
-j udge- corrmand.

Descriptions of tags for -j udge-:

ok

prong

2-146

Sets judgment to ok, continues processing
commands between -j udge- and next
judging or exdented command, *z j udged* is
set to -1

Sets judgment to Tio, continue processing
comlnands between -j udge-and next
judging or exdented command, *z j udged* is
set to 0.

®

no

ckqu i i

Tloqu i i

quit

exdent

uTl i udge

exit

i g,lore

X

-jud8e-

Sets judgment to no, continues processing
commands between -j udge- and next
judging or exdented command, *z j udged* is
set to 1

Sets judgment to ok, goes to -i fmat cli- (or
-endarrow-if no -i fmatch-), *zj udged*
is set to -1

Sets judgment to flo, goes to -i fmat ch- then
returns to arrow for next response,
z j udged is set to 1

Goes to -i fmat ch- (or -endarrow- if no
-i fmat cli-), judgment not changed, does not
return to arrow even if judged no, *z j udged*
is not changed

Branches to next command that is exdented
one judging level (not one -i f -level).
Judgment is set to unj udged (*z j udged* =
2), so judging continues as if a match had not
yet been made.

Sets judgement to unj udged (*z j udged* = 2).
The path of execution is not changed, except
that judging keeps searching for a match.

Returns user to the arrow and waits for more
keys to be pressed (*z j udged* = 2)

Erases response as if the EDIT key had been
pressed and waits for more keys
(*zj udged* = 2)

Falls through to next command; *z j udged* is
not changed

2-147

-judge-

A -j udge- command can occur in a -do-ne unit. However, this unit
should not be -do-ne outside of the -arrow- structure. An execution
error will occur if a -j udge- command is executed when no -arrow- is
in effect.

Example:

arrow "";buff(1) , "
ok
. compute a,buff (l} ,zjcount

do zreturn , x, error
endarroLAi
*
un i i error
judge no
at 2H IJr
i^irite Your response is incorrect. Tr}/ again.

If the *zret urTi* value after the -comput e- is not -1, the response
will be -j udge-d Tio.

2-148

-jump-

j ump unit mum
jump expr,unitneg,unitH,x,unit2

® The -j unp- command terminates processing for the current unit. The
user is taken immediately to the unit named in the tag of -I. unp-. Any
unit reached as a result of a -j unp- is a new main unit. As part of
starting a new main unit, there is a full screen erase (-i nh i b i i erase-
can alter this). The join stack is cleared (i.e., a -ref LLrri- command will
not be able to return to anything).

A -j unp-in a help sequence sequence does not alter the base unit
pointer. A BACK or a SrmFT-BAac will terminate a help sequence and
return the user to the base urit.

For a conditional -j unp-, an x means do not -j ump-, but fall through
to the next command. A q is not a legal tag for -j ump-.

2-149

•junpn-

jumpn zipper
junpn expr-2,a,b,c,d SS conditional form ok
jumpn zkey=zk (back) ,goback, nextone

The -j umpn- command provides a convenient way to move control
immediately to another unit without changing the main unit. The n part
of -j unpn- indicates that it is a -i ump- with-NO-new-main-unit.

It does not:

• Do a full screen erase

• Do anyinitializations

It does

• Clear thejoinstack (unlike -goto-)

2-150

•junpout.

-j umpout -to Micro PLATO lessons:

j umpeut lessTiane
jumpout (lesson (1))
j umpeut
jumpout q

es lesson name in variable
es return to router
SS same as blank tag jumpout

-j unpoul - to other types of programs:

jumpout fi lenane
jumpout (file(I))
*

jumpeut fi lenamesargl arg2
*

jumpout (file(1))± (String(I))
*

es filename in
SS variable
es passing command
es arguments

SS command argument a
SS in variable

The - j unpeut - command causes an immediate jump to the lesson or
file specified in the tag.

If a blank tag - j umpout - is executed, the user is returned to the router
lesson. If a blank tag - j umpout - is executed in the router lesson, the
user will leave the router and Micro PLATO altogether.

If the name of the lesson or file is stored in a variable, it must be stored
in corrsecutive 8-or 16-bit variables. It must not be stored in a floating
point variable. When the tag of the -j umpout - is a variable, it must be
enclosed in parentheses.

Several precautions should be taken when using variables in the
-j umpeut - command:

- Be sure that the variable allows for at least 10 characters. For
example, your -de f i Tie- should look like:

define i,8: lesson(1JJ)

2-151

-j-pout-

- Be sure to -zero-the first 10 characters of the -j umpout -array
before -pack-ing the lesson name® For example:

define i,a: lesson(1Jr)
zero lesson (i) , "
pack lesson {1) SS mylesson
jumpout (lesson(I))

If a jump to a lesson or file that does not exist is attempted, execution
will continue with the commands following the -j umpout -. Therefore,
it is a good programming practice to include an error message to the
user immediately following a -j umpout - command. If a DOS file
exists, but an error occurs while jumping to it, an execution error will
result. The *zret urn* reserved word will be set to indicate the source
of the error:

fl F-ile does not exist

1 F]ccess violation on tlie file

A command line string of arguments can be passed to a DOS file, either
directly or via a variable. The string is converted to ASCII format before
being passed.

If a Micro PLATO lesson and a cos file exist with the same name (for
example, abcde fg . i sn and abcde fg . exe or abcde fg . com) in the
user's DOS path, the - j umpout - will jump to the Micro PLATO lesson.

The Micro PLATO process switching capability is explained in the
S£#de7z£ DeJ!.zJert/ chapter of the MPAS user's guide.

2-152

-keylist-

Non-executable command

keylist moving,a,q,w,e,d,c,x,z,F],Q,W,E,D,C,*,Z
keyl i5t math, +, -, x, +
keyli5t mathuse,math,help,term SS key lists may
be

SS combined

The -key I i st - command is used to establish a list of keys to be used in
the -pause-and -keytyp€- commands. The -keyl i5t -command is
a non-executable command. A convenient place for -key I i st -
commands is in the beginning of the lesson, as -key I i st - commands
can be placed anywhere.

The first argument is the name of the list of keys. The remaining
arguments are the keys that are in that list. List names must be from
two to seven characters in length.

Seven system-defined lists of keys are available:

numer i c

a I pha

funct

i oucll

ext

keyset

all

Thedigits(fl,i,2,3,4,5,6,7,8,9)

The alphabet (a-z and Fl-Z)

Function keys (see below)

Touch inputs

Input from external device

Keyset inputs only (no touch or externals)

An key inputs

2-153

•keylis(-

The fonowing keys are contained in key 1 i 5t funct :

an5
ass i gn
ass i gn 1
back
back 1
bk5P
Copy

copy 1 erase I
cr font
data help
datal helpl
edit lab
edit 1 1abl
erase in i cro

rle,d Sub
ne?a 1 Sub I
space sup
square sup 1
Square i i ab
st op i erin
5topl i imeup

See the documentation for the -pause- and -keyt ype- commands for
additional information.

2-154

-keytype-

®

keytype var,a,b,c,d,e
keylist mylist,iAI,W,d,D,x,X,a]fi
keytype tar, myl ist , tab, funct , z
keytype value,I, +oucli (425 , 4, 7) , q, next 1, end
keytype value, p (H, Jr,1ff , lfl)
keytype value,i {JJ,JF,1JJ, leo

The -keyt ype- command provides an easy way to tell which keypress
(or touch or external input) from a specified list has been received and is
currently in *zkey* . If the input is hated in the tag of -keyt ype-, the
variable named as the first argument will be set to:

-1 Input was not one of the listed inputs
0 First-named input was received
1 Second-named input was received

etc. And so forth

The maximum number of arguments in the tag is 97. However, touch
areas and point areas require two words (the maximum is then 48 to 97).
The possible arguments for listing keys follow.

Single keys:

ke)rt ype va I ue , a , b , a , S , % , ? , =

System-defined keynames:

ke)rt ype va I ue , next , back , ddt a I

Your own defined lists, as defined with the -key I i st - command:

keyl ist malh, +, -, +, I
keyt ype va I ue , mat li , w , d , x , a

2-155

-keytyl,e-

System-defined hits :

ke>ft ype va I ue , fuTict , a I pha , i ouch

Touch areas spedfying the fine grid x and y location:

ke>rt ype va I ue , i oucli (x I oc , y I oc , xdot a , ydot s}
keytype value, i (coarse, chars,I ines)
ke}rt ype va I ue , p (x I oc , y I oc , xdot 5 , ydot a)
keytype value, p (coarse, cliar§,1 ine§)

The (x I oc, y I oc) tags indicate the fine grid lower left hand corner of a
box that is xdot a wide and ydot 5 high. The coarse tag indicates a
coarse grid coordinate, which specifies the lower left hand comer of a
box that is chars characters wide and 1 i ne5 lines high. The t ouch and
i keywords are the same. Areas specified by these keywords are
reduced to 16xl6 touch panel resolution before the comparison is made
against *zkey*. If you want your lessons to work on all possible
pointing devices you should use this form for specifying touch areas.

The p keyword is used to specify high resolution touch areas. These
areas are compared against the *zpt r I x* and *zpt r 1 y* reserved
words and allow you to identify touch events down to single-dot
resolution. Note that some touch panels will not be able to work with
such high resolution, and if you use this form you will not be able to
register a touch even though you are touching the general area (because
the touch panel returns the center of the touch square, and that may not
fall within the specified area).

For example, if you touch the lower left hand corner of the low-
resolution touch panel a touch will be matched with the following
-keytype-:

pause ke}/s=t ouch
keytype value,i (#,JF,1#,1#) SS Note i {)

2-156

®

•keytyl,e-

®

However, if you used the p form, the touch would not match:

pause ke}/s=touch
keytype value,p{JJ,O,1D,10) se No+a p[)

This is because the touch panel returns the center of the touch square
(16,16) in (*zpt r I x*, *zpt r I y*).

With the i form, pressing the mouse button while the cursor was at
(18,18) would register a touch, while it would not register a touch with
the p form.

See the documentation for the -ke)+ I i 5t - command for additional
information.

2-157

-keyword-

ke}/i^Jord varS app let orangeSgrape
ke}+i^iord var¢ham§terS [cat kitty] S [dog pupp>+]

The -keyuerd- command will judge a student's response as ok and
assign a value to a variable if the student's response contains a keyword
in the tag of the -keyword- command. If the student's response does
not contain one of the keywords, the variable is set to -1 and the next
judging command is executed. If the -keyword- command is not
matched a no judgment is not given.

The text delimiter, S , must separate the keywords. To type the text
delimiter symbol, first press the ACCESS key (SHIFT-I), then press the
comma key. No more than one required word can be included between
delimiters, but synonyms can be included in square brackets. Words are
judged in the order they appear in the student's response Oeft to right).

keyword varShamsterS [cat kitty] S [dog puppy]

Using the above example, the -keyword- win assign the following
values to Tar:

response

hamster
cat
kitty
nice cat
cat and dog
dog
big dog
Puppy
dog and cat
all others not containing
the words "hamster,"
"dog," or "cat"

value of var jud_rment

2-158

®

-lab-/-1abl-

2-159

lab unitx
labl unitx

See the documentation for the -1ie I p- command.

•labelx-/-labely-

labelx major,minor,marksize, I,r
markx rna I. or
markx maj or, miTior, marks i ze
labely major,minor,mark5ize,1,r

The -I abe I x-and -1 abe I y- commands draw tick marks along the
axes and label the major markso The -markx- and -narky- draw
only the tick marks.

The tags for these commands are:

maj or major mark interval (in scaled units)

in 1 Tior minor mark interval (in scaled units); if o,
no rfunor marks

marks i ze The values for marksize are:

0 normal label marks
1 major marks extend to bounds
2 all marks extend to bounds

number of digits to left of decimal

number of digits to right of decimal

Note that the -I abe 1 x- and -I abe I y- commands must include all
five tags.

Micro PLATO requires that -5ca 1 ex- and -sca I ey- be executed
before the use of this command.

2-160

-lesson-

lesson complete SS §et§ *zldone* to -1
lesson incomplete S$ 5et5 *zldone* to JF
lesson no end SS sets *zldone* to 1
lesson express,complete, incomplete,x,no end

The -I esson-command assigns a value to the systemrdefined
variable *z I done* . The tag of - I esson- caLn be either camp I et e
(or camp I et ed), i ncomp I et e, or no end.

The -I esson- command can be used in a conditional form. An x
with the conditional form does not modify the value of *z I done* .

The tag no end is appropriate for instructional lessons that have no
logical end.

2-161

•long-

long 23
I one 1
I oTlg 3 *var

The -arrow- command sets the maximum length of the student's
response. A -I ong- command fonowing the -arrow- and
preceding any judging commands modifies the maximum length of
the student's response. The limit is in terms of 1-byte character
codes, so that a -I ong 4- limits the response to four character codes;
that is, four lower case or two capital letters (a capital letter is two
character codes).

When the length limit is reached, no more characters are accepted by
Micro PLATO. The student must either judge the response (press
NEXT) or change the response.

A special case is a -long I ~. With a -long 1 -, the response is
judged after the first character of the response is typed (no NEXT is
required). Use -force- for forced judging with length not equal to
1.

A -I ong- after the -arrow- and before judging commands affects
the first response; if a -I ong- follows a judging command,
subsequent student responses will be affected.

A -1 ong JJ- inhibits keyboard input except for function keys.

See the documentation for the -force- command for more
information.

2-162

-loop-

loop i< "
chow
ca1c

end1oop
i+1

The commands -I oap- and -end I oap- permit the specification of
program loops using Micro PLATO's indenting structure. (See also
the documentation for the -i f - command).

-A loop begins with a -I oap- command and ends with an
-end I oap- command. All commands between the -1 cop- and
-end I cop-, except for -out loop-and -re I oap-, must be
indented; they must start with a period fonowed by seven spaces or a
period followed by a TAB.

The tag of the -I oap- command is a logical expression. If the tag is
i rue, the indented commands that follow the -I oop- will be
executed. If fa 15e, execution resumes following the -end I oop-
command. The tag of -I oap- is evaluated at the beginning of each
pass through the loop. A - I oap- command with no tag is treated as
if it had a tag with a true expression. True is defined as any negative
number. False is defined as any non-negative number. The
comparison operators (such as = and ±) will always return -1 for true
and 0 for false.

The -end I oap- command marks the end of a loop. It must have a
blank tag. It causes an immediate branch to the -I oap- command.

You can terminate a loop prematurely with the -out I oop-
command. You can transfer control to the top of the loop with the
-re 1 oap- command.

2-163

-maLrkx-/-narky-

markx maj or, minor, marksi ze
marky maj or, minor, marks i ze

See the documentation for the -I abe I x- command.

2-164

-mode.

®

de write S$ Standard overwrite mode
de erase SS reverse write mode
de reun-ite SS erase/l^irite mode
de inverse SS i^irite dark on light field
de complement SS write in complementary color
de oldmo¢le,write,erase SS conditional form

The -mede- command specifies the display writing mode that affects
the display commands. When each main unit is begun and after a
full screen erase, the -mede- is set to wr i i e. Executing a -mede-
command chaLnges the reserved word *zmocle*.

The conditional -mede- command can be used to select one of
several modes based on a variable. For example, the following code
switches to mode write from mode erase or to mode erase from mode
write as illustrated below.

mode zmede, i^ir i te , x, erase, x

In all other modes no change takes place.

Mode wr i i e (overwhte) writes dots without erasing previous
whting or lines in the background. This is the standard mode set
upon entry into any new main unit. It is useful for writing over
background figures without disturbing them. On a color display
mode whte whtes dots in the foreground color.

tlode erase removes dots in written character or lines by turning o#
any dots that would be turned on in mode write by a -wr i i e-,
-draw-, and so on. On a color display mode erase writes dots in the
background color. This mode is useful to erase selectively a part of a
complex display. You must return either to mode write or to mode
rewrite when erasing is complete so future writing is not "invisible."

Mode rewr i i e (erase/whte) has the effect of first erasing a character
space and then writing a new character into it. This is useful for
writing new information over old without having to erase first (with
-erase-). Mode rewhte with graphics (lines, dots, fills) is the same

2-165

•mode-

as mode write. On a color display mode rewhte writes the characters
in foreground color on a box of the background color.

Mode i nverse displays characters by interchanging background
and foreground colors (in each character space, the o7! and o# of each
dot is reversed). For graphics, mode inverse is the same as mode
erase. On a color display, mode inverse whtes the characters in the
background color on a box of the foreground color.

Mode coinp I ement writes dots in the complementary color of the
underlying screen. The current foreground and background colors
are not involved-the colors on the screen determine what the color
of the object will be. For example, the following code will plot the left
half of the screen in white and draw a line from the lower left to the
upper right.

color display;zwhite,zblack
erase
fill ir,17;256,5ii
mede camp 1 ement
draw Jr,Jr;511,511

0n the left (white) half of the screen, the line will be black. On the
right ®lack) half, the line will be white.

Pairs of complementary colors can be set up with the
-co I or camp I ement - command. All graphic objects can be plotted
in mode complement.

The system variable *zmode* contains the current mode and is set to

-1 if mode is erase
0 if mode is rewrite
1 if mode is whte
2 if mode is inverse
3 if mode is complement

•next-/-nextl-

ne?ct un i i man
nerd varl -var2/3 , unitneg, unitJ7, unit i , x
ne?<t q SS clears next pointer
next I unitnam
ne?<t I varl -var2/3 , unitTieg, unitfl, unit 1 , x
ne+<t 1 q SS clears nerd I pointer

These commands specify which unit to execute when the user presses
the appropriate key. With SHIFT-NEXT, BACK, SHIFT-BACK, and STOP,
the unit named in the command is executed as soon as the key is
pressed.

A -next - command indicates which unit to go to after the current
unit. When you reach the end of the current unit, there is an"invisible" pause. If you press NEXT, you are taken to the unit named
in the -nerd - command. The -nerd - command is handy for going
through a sequence of units.

In the conditional fom`s of these commands, an x argument leaves
the pointer unchanged, and a q argument clears the pointer and re-
establishes the default action of the key.

Default actions for keys:

SHIT-NEXT NEXT
STOP

BACK
SHIT-BACK

In help-type
sequence

If command is
not included,
a branch wh
not be done
when the key
is pressed.

If command is not in-
cluded, the user wh
return to the base unit
when the key is pressed.

NOT in help- If a command is not included, a branch
type sequence will not be done when the key is pressed.

2-167

-next-/-nextl-

Each Micro PLATO unit must specify either a -next - type command
or a -j ump- or -j unpn-, unless it is the final unit in the lesson.

For example:

uni i one
at 2lH
i^irite First Unit.
*
unit tue
at 21"
write Next Unit.

Unit i wo will never be executed because unit oiie does not contain a
-nerd - type co-and.

The last unit specified by the -next - command is the one used when
the corres|)onding key is pressed. For example:

unit a
nerd dummy
next red I

Uhit rea I will be executed after unit a.

2-168

-no-

no SS no tag

See the documentation for the -ok- command for a description of the
-no- command. It is the same, except that it issues a no judgment
instead of an ok.

2-169

-noword-

noword nond(1) ,tar
Tioword nond(i) ,5
rlouerd SS clears the .'noword"

The -Tioword-command is similar to the -okword- command,
except that it controls the text that is displayed when a "no" judgment
is given at an arrow.

See also the documentation for the -okword- command.

2-170

-obtain-

obtain filel;unitl,unit2,units
f i I e2 ; un i i a , un i i b

obtain maps;usa,rus§ia=ussr,britain
obtain ;title,credits

The -obt a i n- comlnand is used to designate units to be obtained from
another file when a lesson is executed. Such units can be used with all
commands that specify units to execute, including the -do- command
and help-type commands.

The tag consists of a file name, a semicolon, and a list of one or more
unit names separated by commas.

The file name part of the tag gives the name of a file on the disk
containing the units. This file can be thought of as a library of units, or it
can be a lesson that can be executed on its own as well as providing
callable units.

The units part of the tag lists the names of one or more units to be found
in the nbrary file.

If the file name is omitted, the units are obtained from the currently
executing lesson; that is, the lesson to which the last - j umpout - was
done. This is useful when the library contains "driver" code that makes
reference to units located in the executing lesson.

If an entry in the list of units is of the fom\ I un i i =un i i , the name on
the right of the equivalence sign is the unit name searched for in the
library ffle. The name on the left is the local unit name used within the
lesson containing the -obt a i ii-. The main use of local unit names is to
use two units with the same name in two different libraries.

The -obt a i Ti- command must be placed at the beginning of a lesson
written in Micro PLATO. It is legal only before the first unit.

2-171

-obtain-

If the lesson also has -a f fer-commands, they must come after the
-obt a i Ti- Command(s).

Blank space can be used freely in the tag of the command, but blanks
cannot occur within lesson names.

The -obt a i n-command can be continued over more than one line.
The tag of each succeeding line has the same syntax as the tag of the first
line.

The file and unit names are literals. They cannot be variables or defined
constants. The file name is the name of the file on a Micro PLATO disk
to be searched for the specified units.

The maximum number of lessons that can be -obt a i n-ed depends on
the value of the FILES environment variable. If this variable is set to 20,
as we recommend, the maximum number of -obt a i n-lessons allowed
is 14. The maximum number of units that can be -obt a i Ti-ed is 114.

See Micro PLATO Language Unit Libraries for more frofom\ahior\ ar\d
examples®

2-172

-offer-

offer unil: I ,unit2,units
usa , ussr , br i i a i n , germany
sample

offer (al I)

The -a f fer- command makes units available to other lessons. Uhits
named in the comlnand's tag can be accessed by other lessons via the
-ob+ a i Ti- command. Only those units listed in the -a f fer- command
can be accessed by other lessons. The maxinum number of units that
can be -a f fer-ed in this way is 134.

The -of fer (al 1) -format makes every unit in the lesson available to
other lessons. If -of fer {al I) -is used, it must be the only -of fer-
command in the lesson. The maximum number of units in this lesson
must be less than 153. If more than 152 units are placed in this lesson,
the error message "obtained lesson cannot be found" will be seen.

The -obt a i n- command must be placed at the beginning of a lesson
written in Micro PLATO. It is legal only before the first unit. If the
lesson also has -obt a i n-commands, they must precede the -a f fer-
co-and(s).

Blank space can be used freely in the tag of the command. The -a f fer-
command can be continued over more than one line. The unit names
are literals. They cannot be variables or defined constants.

See Micro PLATO Language Unit Libraries for rr\ore ir\£orrr\at±or\ aLnd
examples.

2-173

SS unconditional match, "ok"
SS uticondit ional match, '.no"

a=b SS match if "true"
(3*x+4) SS match if expression i5 iiegativE

The -ok- and -ilo- with blank tags always stop judging as soon as they
are encountered, with ok and i'io judgments respectively.

The -ok- and -1.io- commands with tags stop judging only if their tags
are i rue. h this case, all tags that round to a negative integer are i rue.
All zero or positive tags are fa 15e and the command is not matched.

After one of these commands is matched, the indented commands that
follow it are executed. Then the commands after the - i fmat ch- (if any)
are done. After the -i fmat cli-, if the judgment was ok, control passes
to the -endarrow- and on through the program. If the judgment was
no, the program waits for the user to enter another response. Notice
that for the purpose of -i fmat ch-, a -ilo- is a perfectly valid mat ch.

2-174

-okword-

okword cknd(I) ,g
okirord cki^id(I) ,var
noi^iord noird(1) , 5
ckword SS clears the "okword"

The commands -okword- and -noword- allow an author to alter the
default system feedback at an arrow. The default feedback is ok for a
correct response and Ilo for an incorrect response.

The first tag of the -okuerd- and -nouord- commands indicates the
starting variable of the buffer where the replacement word is stored.
This can be an 8-bit or a 16-bit integer. The second tag indicates the
number of 8-bit bytes in the buffer.

It is necessary to store the desired string into the buffer indicated by the
-okword- or -nouerd- command. For example:

pack oki^id {1) „ excel lent
oki^iord oknd{l) ,g

will display exce I I ent instead of ok when a student correctly
responds to an arrow.

An -okword- or -noword- will remain in effect for the entire lesson
unless another -okword- or -noword-is executed. Therefore, it is
important to remember that local variables must be used with extreme
care with these commands: if the buffer is a local variable and the unit
returns, the feedback message will be garbage.

An -okword- or -noword- with no tag clears the feedback message,
returning it to ok or no.

2-175

-okword-

Example: A different word will be displayed at each arrow when the
user responds correctly.

define i]B: okt^id(9)
buf (15)

*
uTl it i eat
pack oknd (1) „ excel lent
oki^iord okwd(1) ,9
arrow 5";buf(I) ,15
an5uer dog
endarrow
*

pack okwd (1) „ good
* add extra Spaces tt
arrow "lJr;buf{l) ,15
ansuer cat
enchrrow
*
okrord
arrow 151JJ;buf(i) ,15
answer mouse
enchrrow

2-176

-Or-

ansuer woof
Or
anst^ier rvroo

The -or- comlnand is used to link together judging commands and is
useful for judging phrases in Micro PLATO.

Any judging command that is used to match student responses (such as
-aTi5wer-, -anst^ierc-, -arisv-, -Lurong-, -Tio-, -exact -, or
-ke)miord-) can be linked with the -or-command. The commands
that are linked by the -or-command must be at the same indent level
as the -or- command. The indented code following the last judging
command linked by an -or- command will be executed if any of the
linked judging commands is executed.

The value of *zai.iscnt * is not affected by the use of the -or-
command. There are no tags for the -or- command.

Example:

arrow lfl";buf(1) , 2H
ansi^ier the black bird flew SS *zanscnt* = i
0r
ansi^ier the croi^i flew SS *zanscnt* = 2

wr ite Correct.
endarrow

2-177

•Outloop-

loop i >#
do newt

out loop i > "ff
reloop t=5H

ca I c x¢t
end1oop

The -out I oap- command provides for a conditional exit from a loop.
The exit results when the tag of the -out I oap- command is evaluated
as i rue. Exit is to the first executable command past the -end I oap- of
the current loop. An -out I oap- command with a blank tag is treated
like one with a true expression in the tag. The -out loop-command
must be at the same level of indenting as the -1 oap- to which it applies.

The -re 1 oap-command permits a conditional branch to the -1 oop-
command. It cannot terminate a loop. If the expression in the tag of the
-re I oap-is true, there is a branch to the top of the loop. A -re I cop-
command with a blank tag is treated like one with a true expression in
the tag. The -re I oap- command must be at the same level of indenting
as the -1 oap- to which it applies.

The tags of -I oap-, -out I oap-, and -re I oop- are logical expressions.
Nested loops (loops within loops) are permitted. The -re I oap- and
-out I cop- can be "exdented" to allow multiple exits from nested loop
structures. The exdented commands are executed on c#ch pass through
eflch loop in which they occur, regardless of the level of indenting.

2-178

.outloop-

loap
loop

®

®

. calc t¢t+I
. outloop t=1fl
reloop t=3Jr
out loop i: =2JJ

end1oop
end1oop

In the example above, the indented (first) -out I oap- results in exit only
from the inner loop. The second -out I oap- results in exit from both
loops if its tag is true. The -re I oap- branches to the outer -I oop-
command if its tag is true.

2-179

-pack-

pack place (1) i lengthSstring
pack place(1)SSBoo! SS lengtli not stored
pack place(1) S lthSYour number is {s,nun}®

The -pack- command places a character string (the third tag) into
integer variables starting with the variable named in the first tag® The
number of characters found in the string is placed in the second tag.
The second tag can be omitted by using S S between the lst and 3rd tags.

Example:

define place(3)
I engt h
i , a: eight (5} =place (I)

pack place (1) S lengthShel lo

After the above -pack- command is executed, the variables will contain
the followhg characters:

16-bit variables,
2 characters /variable)

place(I) he
place(2) 11
place(3) a

8-bit variables,
1 character /variable

eight (1)
eight (2)
eight (3)
eight (4)
eight: (5)

The variable 1 ei.igt h will be set to 5 because there are five characters in
the string.

You can use , (comma), ; (semicolon), or S (text delimiter) as
separators.

2-180

®

®

®

®

®

-pack-

A floating point variable is not allowed as the first tag of the Micro
PLATO -pack- command.

Only the -chow- and -5tiowa- commands can be embedded in the
-pack- co-and.

pack place(i)SleTigtliSYour number i5 {5,rium}.
pack place{1)SlengthSYour name is {a,name(i) ,18}.

An embedded -pack- command is similar to an embedded -wr i i e-
command. For example:

pack place (1) S lengtliSYour number is {s,numb.
slioi^la placetl) , length

produces the same display as:

write Your number is {5,num}.

It is important that you note that if the embedded buffer is the same as
the buffer being -pack-ed into, undesirable results may be produced.
This is because a temporary buffer is not allocated for the Micro PLATO
-pack- command. For example:

pack buf (i) , len,January
pack buf(I) , len,The montli is {a,buf{1) , len>.
5hoi^ia buf (l) , len

will display The month is January.

2-181

-paint-

paint SS blank-tag form

The -pa i nt - command, with a blank tag is the only form of this
colnmand available in Micro PLATO. It may not be available on all
machines.

The -pa i nt - command is used to fi.ZZ an area of the screen with a solid
color.

The current foreground color is the color in which the fill will be
performed. The -pa i nt - expands out from the current screen location
(*zwherex*, *ziAjlierey*) until it reaches a dot in the current
background color.

After execution, *zret urTi* is set to the following:

-1 successful fill

Given selected foreground and background colors, it will pez.7tf in the
foreground color until it reaches a border in the background color.

For example:

color display;zblue
at 256,256
circle 2Jr#
color display; zred, zblue
at 256, 256
pa i nt

will draw a blue circle, and then pet.7zf the blue circle in red.

2-182

®

®

®

®

PaLLse
Pause
Pause
*

Pause
Pause
Pause

-Pause-

SS wait for a ke}+press
var SS "tar" is time in seconds
N,keys=a,b,1istl SS wait for time of N or

SS keypress
ke}/s=a I pha , back , I ab
key5=erd , a I pha
ke}/s=t ouch , back , back 1

The -pause- command tens Micro PLATO to pause until either a time
limit is reached or until an input is received (keypress, touch, or external
input). The keycode value of the input received is returned in *zkey* .

For a timed pause, the first tag of the -peuse- command indicates the
length of the -pause-. The time specified is in seconds. A
-pause i i me- (with no keys hited) clears the key buffer as if a
-c lrkey-had been executed. If the time limit of the -pause-expires
and no key has been pressed, *zkey* is set to *zk (i i meup) * .

A blank-tag -pause- command waits for any input from the keyset.

The system-specified keylists (like a I pha and funct) and -key I i st -
and -keytype-can be used with -pause-.

The command -pause JF- does not pause for any length of time. It is
commonly used to check if a key has been pressed without pausing:

pause JJ, ke>/5= funct

will not pause at all, and permit *zkey* to be set to whatever key might
have been pressed.

The -pause- command cannot pause accurately for times less than
about 0.05 seconds (pauses for .02, .045, .010, and so on, may be the
sane).

2-183

-Pause-

Be aware that if the tag of the -pause- command uses only integers, it
is treated by the rules of integer division; for instance,
-pause lo/1DJJ-becomes -pause Jr-. (Refer to the -calc-
command for details.)

Note that touch is enabled whenever a -pause ke}+s=t oucli- is
executed, and that after the -pause- touch will be disabled (if it was not
-enab I e-d before the -pause-). This can lead to constant enabling
and disabling of the mouse or touch panel if the -peuse- is in a loop. If
you want touch to be constantly enabled, you should do a separate-enable touch-.

2-184

®

.pixels-

pixels xpixels,ypixels SS screen resolution
pixels 512,512 es default, standard PLfiTO
pixels lJF24,768 SS highest resolution
pixels 640,480 es higli resolution

The -p i xe 15- command is used to specify screen resolution. The
reserved words *zxp i xe I s* and *zyp i xe 15* are set according to the
resolution selected. If this command is omitted, the standard 512x512
PLATO screen resolution is used.

Like the -obt a i Ti- and -o f fer- commands, the -p i xe 1 a- command
must be used only in the initial entry unit, or IEU, of a lesson; otherwise,
a condense error will occur. A condense error will also occur if an
unsupported screen resolution is specified.

When a lesson is loaded for execution, the screen resolution specified
with -p i xe 1 a- is used. If the Low Level Library loaded does not
support the specified resolution, an execution error will occur.

The coordinate system used in programming a lesson depends on screen
resolution. Gross~grid coordinates are interpreted differently
depending upon what screen resolution is specified. For 512x512
resolution, interpretation is based on a /o#r-digit number. The first two
digits to the left of the decimal represent character position, and the next
two represent line number. For example, at 512x512 resolution, the
gross-grid coordinate 1010 indicates the tenth character position on the
tenth line from the top.

For resolutions other than 512x512, interpretation is based on a s!*-digit
number. The first three digits to the left of the decimal represent
character position and the next three, line number. For example, at a
specified resolution of 1024x768, the gross-grid coordinate 1010 would
indicate the tenth character on the first line.

2.185

®

-pixels-

NOTE: Before using -pi xe 15-to change the screen resolution used in
a lesson, you should be aware of what effect that may have on your
lesson. Gross-grid coordinates are based on an origin in the upper left
comer of the screen. Fine-grid coordinates are based on an origin in the
lower left comer of the screen. When you change resolution, objects
specified by gross coordinates and those specified by fine coordinates
will move either farther apart or closer together.

2-186

®

®

plot 96
define box=12,a,b,c
pl ot box
plot a*b+c

-plot-

SS can be an integer

SS can be a clef ined constant
SS or variable or expression

A -p I ot 9 6-causes the character that is stored in the terminal memory
slot 96 to be displayed. Since slot #96 is letter % of the alternate font
character set,

at 916
plot 96

is equivalent to

at 916
(a ize H)
unite % SS F-ONT %

Tags from 0 to 126 display the corresponding slots from the altfont
charset. Numbers 63 and 127 do nothing.

An outcof-bounds tag will cause aLn execution error.

There is no place where a -plot -ffcwsf be used. However, in cases
where the information is essentially numerical, it is more convenient to
Say -plot variable-than to use a long -writec-.

2-187

-Press-

press in
press fak (in))
press dad a
press next i
press pri nt I
press (expr)

SS press letter "in"
SS press letter "in"
es press DF`Tfi
es pre55 SHIFT-NEXT
SS initiate Screen print
SS expression; use paren5.

The -press- command puts the key specified into the student input
buffer. It is as if the user pressed that key.

It is advisable to refer to keys using the key name or *zk* instead of the
keycode number. For example, use -pre€5s a-or -press (zk (a)) ~.
Note that the parentheses are required around *zk* and when using a
keycode number.

To press a function key, use the system-defined keyname; for example,
use -pre§5 ddt a-.

When nmning Micro PLATO, if the user is not in the router lesson, a
-press st op I - will return the user to the router lesson.

There is a special keyname that can be used to initiate a screen print
under program control: pr i nt i . To start a screen print, execute the
following command:

pre55 pri nt I

2-188

®

®

®

-Press-

The fonowing sequence of commands will place the characters a and ¢
into the student buffer and will display the characters at the arrow.

Press a
Press ¢
arrow 5";buf (i) , 3H

The previous three commands are equivalent to

arrow 51dy;buf (1) , 3JF
pack buf (I) „a¢

2-189

-putd-

putd ; (; lparen;
putd .%. % I
putd . =.equal B

SS make (into a ''word"
es put spaces around % Sign
SS charige = sign to word

This command replaces one character string in the student's response
with another character string. Any character can be used as a delimiter
to separate the two character strings. The first character in the tag of the
Fur d- command is the delimiter and the delimiter is used three times.
In the above examples, a semicolon and a period are used for the
defroeters.

Every occurence of the first character string in the student's response is
replaced by the second character string. A -put d ; (; I paren; -
replaces every (symbol in the student's response with the word
1paren.

The value of *zret urn* after executing a -put d- is

-1 if -put d-was successful
0 if replacement string is longer than the specified buffer

Note that -put d-can only be executed during answer judging.

2-190

®

®

®

®

®

.putd-

In the fonowing example, if the student types an "=" sign, Micro PLATO
will attempt to replace the "=" sign with the word "equal." If the student
types dog = puppy, the replacement win overflow the buffer. In this
case, the answer will be judged incorrect and the value of *zret urn*
wh be set to 0.

arrow 31JF;reap(I) ,1 I
putd . =.equal -
i f zret urn=JF

at 3H1"
. erase 5 ff

write uTiabl€ to replace with -putd-
end i f
endarrow

See the -arrow-command for additional information on arrow buffers.

2-191

-randp-

randp item,start ing variable
randp item, p lace

The -randp- command is used to select a number from a permutation
list established by a -Set perm- command.

The first tag of the -randp- (i i em) must be an integer variable into
which the chosen value is stored. The second argument is the starting
variable of a series of consecutive variables prepared by the -set perm-
command. When the permutation list is exhausted, a " is returned in
i i em and the variable named in the second tag contains a jr.

Since any number of locations can be established, several independent
sampling operations (without replacement) can be carried on
simultaneously.

Users can construct spedal purpose permutation lists without using the
-set perm- comlnand. The variable named in the second tag fo I ace)
must initially contain the number of items in the list. The variables
immediately following p I ace contain i'iumber bits arranged in any
manner chosen by the user.

Take note that it is possible to modify the list of bits that were assigned
into the permutation list (the list of bits) by the -set perm- command.

The number of bits set (equal to 1) in the bit list must be ¢£ Jeesf as large
as the number of items. If not, random bits from other variables will be
changed from 1 to 0 and/or the program will give an execution error.

Note also that global variables must be used for the place where the bits
are stored.

2-192

®

-randu-

randu randnum , max

® The -randu- command generates a random number between the
values of 1 and the number given in the second tag. This number is
stored in the variable named by the first tag.

The value of the 2nd tag must be

0 ± max ± (214-1)

An outof-bounds value for the 2nd tag will cause the lesson to fail and
give a lesson error message.

If the second tag of a -randu-command is Jr, the only number that can
be generated is fl.

If the number generated by the -randu- is larger than the named
variable will hold, the right-hand (lower order) bits are kept and the rest
are thrown away (this could happen with
-randu 8bitvar,16bitvar-).

2-193

rat

10JJ,1JJJ7 es sized, rotated, and relocated
es Screen posit ion relat ive to
se -rorigin-
SS blank tag sets Screen posit ion
es to current -rorigin-

The -rat - command detemines a new panel position, relative to the
preceding -ror i g i n-, for display of text, data, or figures. The current
state of -a ize-and -rot at e-commands is taken into account.

The -rat - command establishes a left margin just as -at - does.

See also the documentation for the -ror i g i 11- and -at - commands.

• 2-194

®

-ratnm-

rati'iiiii 16Jr," SS 16Jr dots +, 4fl dots t from
* SS -rorigin-
ratnm x,y SS variables & expressions ok

The -rat Tim- command, like -rat -, sets a screen location for
displaying text, data, and drawings, relative to the current -ror i g i n-.
The -rat rm- command does alter *zwherex* and *zwherey* but it
does not set a new left margin for continued lines of the display.
Continued lines are aligned with the margin set by a preceding -at - or
-rat -, or if there is no -at -or -rat -, at the left margin set by the
current -ror i 8 i Ti-.

See also the documentation for the -at rim- and -rat - commands.

2-195

®

®

box
box
box

xl , yl ; x2 , y2
x 1 , y I ; x2 , y2 ; i h i ckiie5s
;256,256 SS I corner at screen location,

SS other at 256,256
box 256,48" SS i corner at rorigin,

es otlier at 256,48JF

The -rbox- command draws a rectangular relative box with opposite
comers at the two locations specified. The first corner can be any of the
four comers; the second comer must be diagonally opposite the first
Comer.

For thickness, specify the number of lines (or dots) desired in the walls
of the relative box (this specification is optional). If the value for
thickness is positive, the wall of the relative box will be built up
outward from the comers. If the thickness value is negative, the
buildup is inward. Thickness values of - I, #, 1, and blank (that is, none
specified) all mean the same thing: the relative box wall is to be one line
thick.

If the first location is omitted (-rbox ; x I oc , y I oc-), the current
display position is used as one comer. If only one location is specified
(-rbox 2 5 6 , 48#-), the relative box drawn has one comer at the
specified location and the other at the relative origin location.

After -rbox- is executed, the system-defined variables *zwherex* and
zwhere5+ are set. For boxes with positive thickness values, they`re set
to the lower `left comer of the relative box . For boxes with negative
thickness values, *zwherex* and *zwherey* are set to the lower left
corner of the last-drawn interior relative box.

See also the documentation for the -ror i g i n- command.

2-196

®

•rcircle-

rcircl€ radius SS sized, rc>tated circle
* SS or ellipse
rcircle radius,angl€l ,angle2 SS partial rcircle

®

®

The -rc i rc I €- command draws a circle, an arc, or an ellipse with the
center at the location set by a preceding -rat -, -at -, -rat tim-, or
-atnm-(the center is at *zwherex*, *zwherey*).

To draw ellipses use the -a i ze-command to set different x and y
scales.

The variables *zwherex* and *zwherey* remain at the center for the
whole circle form and are reset to the last point drawn on the
circumference for the arc form.

Like -c i rc I e-, the tag of -rc i rc I a- has one argument for a full circle
and three arguments for a partial circle. A comma separates all tags.
The first argument is the radius in fine grid dots. The second and third
arguments are the beginning and ending angles for arcs. These are
specified in degrees (no degree sign). These angles are measured
counterclockwise from the positive x axis.

Circles and arcs of large radius (i.e., >10,000 pixels) may not plot
correctly on all video displays.

See also the documentation for the -c i rc 1 E- and -5 i zE- commands.

2-197

•rdot-

rdot 2JFJF,167 SS fine grid
rdot xpos, ypo5 se expressions & variables ok

The -rdot - command lights a single dot on the panel at the location
named in the tag of the command. The location is relative to the
preceding-rorigin-.

An -rdraw- command with the same tag will produce the same display
as an -rdot -, but -rdot - is much faster.

It is, of course, possible to draw anything using the dot-by-dot method,
but this is a very time-consuming. Use -draw-, -rdrauj-, or -gdrau.-
to create a figure.

2-198

®

-rdraw-

rdraw H,JF;Zflfl,1JJH SS draws liiie from rorigin to
* S$ 2jFfl dots +, iflH det§ t
rdraw ; 125,125 S$ line from *wTiere**,
* SS *wlierey* to lz5,125
* SS from -rorigin-
rdraw xl,yl;x2,y2;Skip;x3,yE;x4,y4
rdraw 256, 256 SS equivalent to
* SS -rdot 256,25E.-

The -rdraw- colnmand allows one to draw a figure by specifying
locations with respect to a point of reference (the -Tor i g i n-). Figures
made with -rdraw- can be rotated and made larger or smaller by using
the -rot ate-and -a i ze-commands.

The maximum number of arguments in the tag of -rdraw- is 63. The
tag §k i p can be used.

This command is especially useful when creating a display that will be
used more than once and needs to appear in a different position on the
screen each time.

NOTE: Only fine grid tags are allowed with the -rdraw- command.

The following example sets a reference point at 252,263:

rorigin 252,263
rdraw ",H;95,JT; 31, -49;fl,JF

The first line is drawn from the origin to a point 95 `dots to the right, and
on the same y coordinate. The third point is 31 dots to the right of the
rorigin and 49 dots below it. The fourth point is at the rori gi n. The
same triangle can be drawn at a different location by changing the
Tor i g i n.

2-199

-receive-

receive buffer,bytes SS receives a-bit bytes

The -recei ve-command receives data that was sent from the CPU
with a (CPU) -xm i i - command. The first tag gives the name of the
Micro PLATO variable that will receive the first piece of data. The
second tag gives the maximum number of successive bytes that can be
filled. If fewer than the maximum number of bytes were sent, execution
just continues to the next command.

The reserved word *zdat a* gives the current number of data bytes
available.

Note that the terminal's processor is receiving 8-bit bytes. When the
bytes are filled into 16-bit Micro PLATO variables, the first byte fills the
high-order 8 bits and the second byte fills the low-order 8 bits. This just
means that although the bytes are only 8 bits long,16-bit data words can
be transmitted without extra processing.

Note that when receiving 16-bit words, the number of bytes given by the
second tag must be twice the number of "words."

2-200

-release-

release file
re 1 ease records , st art , rlrec=
release file,rip
re I ease records , st art , Tirecs , f i p

The -re I ease- command releases a file or sections of a file that have
been reserved with the -reserve- command. See the documentation
for the -reserve- command for more detailed information.

The possible values of *zret urTi* are:

The section was released without error

There is no dataset currently attached

Bad record number or bad number of records
(negative values are not allowed)

Bad FIP

The section is not reserved

2-201

•reloop-

loop
* code
reloop (condition = TF=lJE)
* code
end1oop

The -re I oap- command transfers control to the beginning of a -I oop-
structure.

See the documentation for the -out I oop- command.

2-202

®

-remove-

remove item,Starting variable
restore item,place

In the -reiTrove- and -rest ore- commands, i i.em is the element to be
removed from (or restored into) a permutation list established by a
-Set perm- command. The second tag is the variable in which the list
begins.

Example:

setperm 6fl,pl (1) SS prepare 6JJ item list
block pl(1),sl(i),long es§ave acopyofthe list
randp cliosen,pl (1) SS select a value
remove chosen,5l (1) SS delete from copy also
restore oldval,pl {1) SS replace a value in list

The -randp- command selects a number from the permutation list
(which is stored in p I (i) and successive variables), and returns it
in variable chosen.

The -remove- command then deletes member chosen from the copy of
the permutation list that starts at a 1 (I) .

The -rest ore- command can be used to replace an item in the
permutation list. Its tags are the same as those of the -remove-
corrmand.

2-203

-reserve-

reserve fi le
*
reserve records , st art , nrecs
*
reserve f i le, f ip
*

es reserve current
es data5et
SS reserve records
es in dataset
SS reserve file in
SS f ip

reserve records, start , iirec5, rip SS reserve records
* es in rip

The -reserve- command can be used in multiuser systems or local
area networks to reserve a file or a section of a file. The
-reserve f i le-form of the command reserves the entire file. The
-reserve records- form reserves the records indicated.

The first fom` of the command above reserves the currently attached
dataset. The second form reserves records in the currently attached
dataset, beginning with the records indicated by st art and continuing
for nrecs-i records thereafter. The FIP (File Information Package) is an
optional tag on the -reserve- command. The third and fourth forms
given above are for use with files opened with the -ays f i I e-
commands. If present, the FIP must be first prepared by either a
-5ysf i le open-or -5ysf i le create-command (see the
-s}+a f i I e-command for a description of FIPs).

Records are numbered staLrting from 1. It is legal to reserve records
beyond the physical end of the file. This will not cause the length of the
file to change. Multiple users can reserve different records in the same
file, though only one user can reserve the entire file at one time.

If another user already has the file reserved, the -reserve- will set
zret urn to indicate the failure. Additionally, under MS-DOS a
reserved section of the file will be protected against all reads and writes;
other users will be unable to access it. This behavior is not guaranteed
under all operating systems, however, so if you want your code to be
portable, you must always reserve sections before you access them.

2-204

®

®

-reserve-

Take note that under MS-DOS other users co717!of read reserved sections.
This is different from the behavior of the -reserve- comlnand on the
central PLATO system. Thus, if your lesson executes a
-reserve f i I e-command, #o other users will be able to read that file.
If you wish to reserve a file and still have others read it, you should
reserve a record beyond the end of the file and adopt the convention
that any lesson wanting to whte to that file must reserve that record
before writing.

The -re 1 ease- command is used to release sections of a file that have
been reserved. This allows others to read, write and reserve the section
of the file released.

The values of *zrel: urTi* after a -reserve-are:

The section was reserved without error

There is no dataset curently attached

Bad record number or bad number of records
(negative values are not allowed)

Bad FIP

The section is already reserved (by the current user
or another user)

The number of -reserve-s that can be in effect at one time depends on
the configuration of your local area network; it is not a limitation of
Micro PLATO. If you have a large number of reservations active at one
time the -reserve- command may fall because of an insufficient
number of ``1ocks." Your network administrator will have more
information on the number of locks that can be active at one time, and
will know what to do to increase this number if it is necessary.

2-205

-restart-

restart
restart q

A -rest art - establishes a unit that students can return to when
beginning a new session in a lesson started previously. By inserting
-rest art -s at logical breaking points, a lesson author can ensure that
students always begin a session at an appropriate point in the lesson.

When a student restarts a lesson, he or she is returned to the last main
unit executed.

The -rest art -commaLnd saves to a restart file certain basic status
information, including the culTent main unit, global variables, dataset
attached, character set loaded, and other internal-state infomation
Micro PLATO requires. A restart file is created if one doesn't already
exist for a lesson. Its name is the name of the lesson being executed with
the file extension . ckp appended to it. This restart file is created on
Micro PLATO drive 0, which is mpidr ive 0 in file conf ig . cdc.
(When running CMI, drive 0 is mapped to the student's private
directory).

All restart information is written to disk at the time the -rest art - is
executed. It is advisable to place the -rest art - command at the top of
a unit, before any other code is executed. If you place the -rest art -
later in the unit, any changes made to global variables between the top
of the last main unit and the -rest art - will not be reflected in the
restarted lesson.

The -restart q-fom` of the command destroys the co`ntents of the
current restart file. Restart information remains in effect until it is
explicitly destroyed with a -rest art q-. When a student enters a
lesson with an existing restart file, the system asks that student whether

geb:s¥ftaitthaectr::tg¥rtdE:::to:rt£: tchheopcee8in:i:: [°tf{tshae[::S:::ff:ci:drebs;aft |
lesson completion. If a student completes a lesson by executing the
- I e55on camp I et ed- command and then reenters the lesson, he or
she will start at the point indicated by the last -rest art -executed.

2-206

-restat-

If the Micro PLATO interpreter is invoked using the -c command-line
parameter, restarts are disabled.

The -rest art - command sets *zret urn* as follows:

_1

0

1

2

3

4

5

6

®
The operation was successful

No restart or restarts disabled

Open/ create failure

Too many files open

Write failure

Insufficient disk space

Destroy falure

Access violation

A student may have more than one restart file, but only one per lesson is
allowed.

It is important to note that some information will not be restored when a
lesson is restarted. If a lesson used any files opened via -sys f ile-,
these files will be missing. No local variables will be restored. Be
careful to specify restarts in such a way that all information needed for
the lesson is made available.

If an error occurs during the restart process, the lesson is started again at
its beginning. If the error occurs late in the restart process, some data
may not be left in the correct state. For example, if an error occurs when
restoring global variables, the previously restored active dataset and
character set will still be attached.

2-207

•restore-

restore item,place

See the documentation for the -remove- command.

2-208

®

-retum-

return sin(a/fr) ,b**2 SS returns tliese values
* SS to the calliTig unit

Example:

define f,48:r,a
un i i anyu
clo someu (5. 5,z=*2-4;r,a)
un it someu (a, b)

b
f I oat i Tlg : a

* code, , ,
return sin(a/rf) ,b**2

The -ref urn- command returns values to the calling unit (ai'i}+u) after
execution of the -do-ne unit (someu).

When -ref urTi- is encountered, execution of the attached unit stops
(even if other commands fonow -ref urn-), and values are sent back to
the calling unit. Each value is sent to the corresponding output
argument in the tag of the -do- command. In this example, the value of
5 i n (a/tr) is sent to r, and the value of b* * 2 is sent to a.

The tag of -ref urn- can contain up to 10 expressions. The Micro
PLATO variable *zargs* gives the number of arguments in -ret urn-.

Note that return arguments can be used in units that do not declare local
variables as well as units that do use local variables. The example above
uses only a global define set.

2-209

-retum-

The tag of -ret urTi- ca7mof be continued to another line. The following
format is not legal:

return end**2,
beg i n-45 . 5

There is no conditional form of the -ret urii- command.

Passing output arguments with the -ret urn- command follows the
same rules as passing input arguments using commands such as -do-.

If the -ref urTi- is executed in a main unit, it is ignored.

An execution error will occur if an attempt is made to return or pass
more variables than defined in the calling instruction or in the argument
list of the called unit.

2-210

-rfill-

rfill xl,yl;xl,yl
rfill ;xl,yl
*

®

®

®

SS f ine grid only
SS corTier = *zwherex*
SS *zwherey*

The -r f i I I - command is used to fill and erase rectangular areas that
are located relative to a point of reference (the -ror i g i n-)a

If the terminal is in -mede wri te-or -mede rewrit e-, the -rf i 11 -
command fills the specified area (i.e., turns on all dots within the
rectangle). If the terminal is in -mode erase-or -mode inverse-, it
erases the area (i.e., turns off all dots within the rectangle). The
-r f i 11 -command does "of affect the *zwherex* and *zwherey*
positions.

The tags of -r f i I 1 - specify diagonally opposite comers of the area to
be filled or erased. Corner specifications mwsf be separated by
semicolons. If the first tag (corner) is omitted, the current display
position is used as one comer. Both comers must be specified with fine-
grid coordinates.

Rotation affects -r f i 11 -, but possibly not in the way you would
expect. Since an -rf i 11 -is defined by two points that are diagonally
opposite corners of a rectangle, you will naturally define a new
rectangle if you change their relationship. From a practical standpoint,
however, this may not be what you want. For example, if you rotate a
figure made up of an -r f i 11 -in an -rbox- through 30°, the box and
the -r f i I I - no longer match.

See also the documentation for the -ror i g i Ti- command.

2-211

-rori8in-

rorigin 255.255 SS specify origin for relative
*
rorigin x,y
Tor i g i n
*

es commands
SS variables & expressions al lot^ied
es set origin to current
SS *zwherex* , *zwhere}/*

The -ror i g i n- specifies a reference point for relative commands:
-rat -, -ratnm-, -rbox-, -rdraw-, -rcircle-, -rdot -, -rf i 11 -,
and -rvect or-.

A setting of -ror i g i n- remains in effect until another -ror i g i ii- is
executed. If an -ror ig i n-does not precede a relative command, the
default origin (0,0) is used.

Execution of -ror i g i n-causes the last screen position (the system-
reserved words *zwherex* and *zwherey*) to be set to that point and
sets the margin:

rorigin 100,loo
iurite Hi, Mar}+ es appears at lJJJ7,1Jro

I see you. SS inargin at x="H

Coarse-grid coordinates are illegal on relative commands.

2-212

®

®

®

®

-rotate-

rotate 12Jr SS does Tiot work for text
rotate tar es variable§ ok
rotate SS same as -rotate JF-
rotate vertical SS only te?d in size JF

The -rot at e- command allows the rotation of the relocatable
commands (-rdraw- and -rdot -). The tag of the command gives the
rotation in degrees. The angle of rotation is measured counterclockwise
from the positive x-axis.

A -rot at e- with no tag returns the terminal to the default rotation of
Jr.

The only rotation of fexf available is -rot at e vert i ca I - for writing in
size Jr. A -rot ate vert i ca I -switches the writing mode of the
terminal from left-to-right to bottom-to-top. In other words, the text
appears to be rotaLted by gfl® .

On some machines, -rot at e vert ica I -does not work well because
of the reduced resolution of the screen.

The relocatable commands (like -rdraw-) are not affected by
-rotate vert ical -.

Example using -rot at e-:

clef ine turn
*
ull it test
rotate vertical
at 1 aJa5
write This is rotated text!
rorigin 256.256
dote lend,tum4=45,36Jr,45 SS makes a pi"ulieel
rotate turii
rdraw Jr,JF; 112,#;32,32;
lend
rotiate JF SS ali^iay5 return to rotate "

2-213

-rvector-

rvect or i a i I x , i a i I y ; headx , heady ; 11ead5 i ze
*
rvect or 2 5 6 , 2 5 6 ; 6fl , 4ff ; 8
rv€ctor x§trt , y5trt ; . 3
rveetor ;xl,yl
*
*
rvector 256, 2JFJr
*

es head5ize opt iorial
es f ine
es relat ive headsize
SS tail at *zwherex*,
es *zwhere}+*, head at
SS relative lJJ15
es tail at rorigin;
es liead at 256,2jFJr

The -rvect or- command is used to draw a vector (also called pointer
and arrow) at a location relative to the preceding -ror i g i n-. This
vector's tail is at the first location given, and its head is at the secondo

If the first location is omitted (-rvect or ; x2 , y2 -), the tail will be at
the current screen position. If only one location is given
(-rvect or 2 5 6 , 2JrJF-), the relative vector drawn will have its head at
the specified location and its tail at the relative origin location.

The headsize argument is optional. Values > 1 and < -1 produce
arrowheads approximately the specified number of dots long. Values
between -1 and 1 produce arrowheads of a size that is relative to the
length of the vector; they are affected by scaling. A negative headsize
produces an open anowhead, and a positive headsize produces a closed
one. The default headsize is 10 or 11 dots, depending on the orientation
of the relative vector.

When using the headsize argument, if you want the vector's tail at the
relative origin, you must state that explicitly in the tag. For example:

rvect or ror i gTix , ror i gTiy ; x , y ; hs i z

See also the documentation for the -ror i g i n- command.

2-214

®

-scalex-/-scaley-

scalex ?<max, (xoffset) SS second arguneut
scaley ymax, (yoffset) SS opt ional

These commands establish the scale that relates x and y values of points
to be plotted via the various graphing commands with the screen
coordinates of the axes or bounded areas previously estabushed.

The xmax tag establishes the x-coordinate to be associated with the
rightmost point on the x-axis set up with an -axes- or a -bounds-.
The xo f f Set tag establishes the x{oordinate of the intersection of the x
and y axes. If there is no xo f fset , it is assumed to be zero. The ymax
and yo f f set tags have analogous function for the Y axes. There are no
default scalings. The -scalex-and -scaley-must be done explicitly.

To cancel the effect of the current -sea I ex/§ca I ey-, use
-sea I ex/sea I ey-with the tag of the last -bounds/axes-, or
-5ca I ex/sea I e}+-with a tag of 511 if there was no previous
-bounds/axes-. For example:

axes lflfl,150
5calex lH
scaley "

scalex lJFJF SS restores x scale to screen dots
scaley 1" SS restores y scale to screen dots

Unusual scaling (for example, a 3rd quadrant graph) depends on the
correct interaction between -axes-and -sea I ex-/-sca I ey-. Be sure
to read about -axes-.

2-215

®

•SC0re-

score var SS puts value var into *z5core*
score SS no tag places -I in *z5core*

The -score- command assigns a value to the system-defined variable
z5core . The tag of -score- can be a constant or any expression in
the range of 0 to 100 (values are rounded to the nearest integer). Any
negative score is interpreted as meaning "do 7tof store any score," so
z5core will be set to -1. Any score that rounds to a value greater
than 100 will produce an execution error. A -score- command with no
tag will assign a value of -I to *zscore* .

If *zscore* already has a value and a -score- command is executed,
the new value overwrites the previous value (*zscore* would contain
the new score).

2-216

-screen-

screen
screen
screeii
5Creen
sereeri
sereeTi
screen
screeii

save; start ing record number
restore; start iTig record Tiumber
savereg i on ; x i , y I , x2 , y2 ; record
rest orereg i on ; record
movereg i on ; x I , y I ; record
re5torepa1ette;record
set up i i n i i co I or , nunscreens , co I ors
se lect ; Screen number

The save and rest ore forms of the -screeTi- command allow you to
save and restore entire screens; the 5avereg i on and rest orereg i on
forms offer equivalent functions for portions of screens. The
movereg i on form enables you to restore a saved screen portion in a
new location. The Set up and se I ect forms allow manipulation of
logical screens.

- commandsThe -screen save- and -scree.

screen save; record
screen restore; record

The -screen save-and -screen rest ore-commands enable you
to save and restore entire displays. Displays are stored in Micro PLATO
datasets. These commands are useful for replotting displays that take a
long time to generate.

A dataset must be -at i ach-ed prior to the execution of the
-screen save-and -screen rest ore-Commands.

It is important to note that displays generated and saved on one
graphics card are 7!of transportable to another graphics card. For
instance, a display saved on a CGA machine cannot be restored on an
EGA machine.

2-217

•screen-

Another importaLnt consideration is the amount of diskspace a display
requires when saved. A display generated on a CGA machine will
require about 16K bytes or 128 Micro PLATO dataset records. However,
a display generated on a high-resolution machine with 4 color planes
could require up to 132K bytes or 1026 dataset records. Depending on
the number of color plaLnes used by a display, the disk space
requirement could be smaller.

The reserved word *zacrrecs* is set to the number of dataset records
a display used when it was saved or the number of records read when a
display was restored. This reserved word is undefined if a
-screen Save-or -Screen rest ore-has not been executedo

When a display is saved, all data about the screen display are saved
also. These include the color palette, mode, and current foreground and
background colorso When a display is restored, the screen display data
are also restored as they were.

The system-defined variable *zret urii* will be set to one of the
fonowing values after a -screen save-or -screen rest ore-.

_1

0

1

2

3

Save /Restore successful

An error occured

No dataset attached

Not implemented for this machine type

Display cannot be restored to this machine type

- commandsThe -screen saveregion-. -screen restorereE

screeti saveregion;xl ,yl ,x2,y2;record
screen restoreregion; record

2-218

®

-screen-

The -screen saveregiori-and -screen restorereg ion-
commands do for partial screens what -screen save- and
-Screen rest ore- do for entire screens. Using these commands, you
can save and restore any rectangular area of the screen.

You specify what area is to be saved by including in the command line
coordinates for the upper left and lower right comers. Only fine-grid
coordinates may be specified. All information about the display, the
color palette, logical screen configuration, and current foreground and
background colors is saved.

AS with the -screen Save-and -Screen rest ore-commands, a
dataset must be -at i acli-ed prior to the execution of the
-screen savereg ion-and -screen restoreregion-commands.
Saved screen data are stored in the attached dataset at the specified
record number.

The reserved word *zret urn* returns one of the following values after
a -screen saveregi on-:

_1

0

1

2

Successful

An error has occurred

No dataset attached

Not implemented for this machine type

The command -screen saveregion-sets *zscrrecs* equal to the
number of records needed to save the screen image and screen
information.

The -screen restorereg ion-command allows you to restore screen
data from a saved partial screen. The screen data are read from the
culTently attached dataset at the specified record number. Screen
information, such as the color palette, mode, and logical screen
configuration, is 7iof restored with this command; it is restored with the
rest orepa I et i e form of the command.

2-219

-screen-

After a -Screen rest orereg i on-is executed, the reserved word
zret urn is set to one of the fonowing values:

_1

0

1

2

3

Successful

An error has occurred

No dataset attached

Not implemented for this machine type

Display cannot be restored to this machine type

The -Screen re§toreregion-command sets *zscrrecs* equal to
the number of records read from the dataset when the screen image is
restored.

The -screen moveregi on-command

screen moveregion;xl ,yl ;record

This fom` of the command performs the same function as the
rest orereg i on fom` except it allows you to specify a screen location
instead of restoring the partial screen to its original position. You use
this form to restore a saved partial screen display to the location
specified for its lower left comer. Only fine-grid coordinates may be
used.

Screen data for the saved partial screen are read from the culTently
attached dataset at the specified record number. Screen information,
such as the color palette, mode, and logical screen configuration, is 7Iof
restored with this command; it is restored with the rest orepa I et i e
form of the command.

2-220

-screen-

The reserved word *zret urn* is set to one of the following values after
a -screen moveresion-:

_1

0

1

2

3

Successful

An error has occurred

No dataset attached

Not implemented for this machine type

Display cannot be restored to this machine type

The reserved word *zscrrecs* is set to the number of records read
from the dataset when the screen image is restored.

The- - command

screen restorepalette; record

This command enables you to restore screen information, such as the
color palette, mode, and logical screen configuration, for saved partial
and full screens. Executing this command erases the entire screen. The
palette and other data are read from the currently attached dataset at the
specified record number. These data are automatically saved when a
-screen save-or -screen 5avereg ion-Command is executed.

The reserved word *zret urn* is set to one of the following values after
a -screen re5torepalette-:

2-221

®
_1

0

1

2

Successful

An error has occurred

No dataset attached

Not implemented for this machine type

-screen-

3 Palette cannot be restored to this machine type

The -screen setub-command

screen Setup; icolor,tlscreens,colors (1)

The screen setup command is used to set up a system of logical screens.
You can use this command on any type of display, but you can define
logical screens only on displays that have programmable palettes. You
can test whether the display your lesson is running on has a
programmable palette by examining the reserved word *zpa I et i e*,
which will be true (- 1) if the palette is programmable.

Log!.caz scrcc#s allow you to define a number of logical display screens
that overlap each other. You can draw an object in one logical screen
without obliterating objects in another logical screen. For example, you
could animate the needle of a dial in logical screen two without
disturbing the tick marks and numbers of the dial plotted in logical
screen one.

Each logical screen is allocated one or more pJ¢7.es of the display
adapter's memory. The reserved word *zp I anes* contains the number
of planes available in the display. A plane of display memory is
mapped to the screen-each dot on the screen corresponds to a bit in the
plane. A p!.xeJ is the combination of all the bits of the planes that make
up a dot on the screen.

Normally, the pixel encodes the color of the dot. However, when the
-screen Setup-command is used, the planes can also provide a
system of logical screens in addition to setting the color on the screen.

The number of planes and the number of colors you want in each plane
dictate how many logical screens you can have. For example, on a
display with four planes (*zp lanes* = 4) you can have from one to
four logical screens. Four planes allow a maximum of 16 colors on the
screen at one time (because 24 is 16)a Each logical screen must have at

2-222

®

-screen-

least two colors dedicated to it. One of these colors is the transparent
color (which allows screens below it to show through), the other you can
choose. Thus, with four logical screerrs, each screen could have two
colors (2 * 2 * 2 * 2 = 16). With three logical screens you could have two
screens with two colors each and one screen with four colors
(4 * 2 * 2 = 16). With two logical screens both could have four colors
(4 * 4 = 16), or one could have eight colors and the other could have two
colors (8 * 2 = 16). The rule is that the product of the number of colors
in the logical screens cannot exceed the number of possible
simultaneous colors.

Each logical screen has a precedence. The higher the screen number, the
higher its precedence. Objects plotted in higher-numbered logical
screens will plot in front of objects in lower-numbered screens.

The -screen setup-command is used to define the logical screens:

screen setup; icolor,n§creens,colors {l)

ico1or

n5creems

This tag contains the initial screen color.
When the -Screen setup-command is
executed, the display is erased to this color.
i co I or must be a floating point value, either a
color reserved word (such as *zb I ue*) or a
userrdefined variable that has been initialized
to a color via the -co I or de f i Tie-command.

This tag contains the number of logical
screens. It can be between 1 and *zpl anes*
(depending, of course, on the number`of colors
per logical screen that you specify in the
cO I Or5 array).

2-223

-screen-

co I ors (1) This tag is aLn array of any type (8-bit or 16-bit
integer or floating point) that gives the number
of colors required for each logical screen. For
example, co I or5 (I) has the number of colors
that will be in logical screen 1, co I ors {2) has
the number of colors for logical screen 2, etc.
This amay must contain at least ri5creene
elements. If Ti5creeTi5 is 1, you can use a
scalar (non-array) variable, but it must always
be a storable value (not a constant).

Possible values of *zret urn* are:

No error occurred

The number of screens requested exceeds the
number of planes that exist

An error occurred during the initialization. This is
most likely due to trying to define too many colors
(the product of the elements of the co I ore array is
greater than maximum possible number of
simultaneous colors).

The transparent color was specified for the initial
screen color.

The -screen set up- command can be used with fixed palette
displays but will fail if you request more than one logical screen.

After a successful -screen set up- command has been executed, the
reserved word *znscreens* is set to the value indicated in n5creeTis.
The reserved word *zscreem is set to the current logical screen, which
will be one immediately after the -screen setup-. The
-screen select -command is used to select which logical screen
subsequent plotting will appear in. It also sets *zscreen*.

2-224

®

-screen-

The logical screens initialized by -Screen set up- remain in effect
until the screen is erased (due to an -erase- command or a -j ump- or
similar command) or another -screen set up-command is executed.

The initial color in logical screen one (the screen with the lowest
precedence) will be the initial screen color (when used with certain
video disk drivers, the initial screen color is also the video key color).
The foreground and background colors will both be set to this color, so
be sure you set a foreground color before plotting anything.

The initial color in each of the higher-level logical screens (2 through
i'i5creeTi5) is the transparent color. Both the background and
foreground colors are set to the transparent color in these logical
screens. Be sure to set a foreground color in each logical screen before
you plot anything in it.

The foreground colors (*zbco I or* and *z fco I or*) and their palette
numbers (*z fpa I et i e* and *zbpa I et i e*) are retained for each
logical screen. Thus, when you select a logical screen with the
-screen se I ect - command, the colors will be whatever you left them
as. The screen mode (*zmede*), screen positioning (*zwlierex* and
zwherey) and so forth are 77of maintained separately for each logical
screen.

The fouowing code sets up a system of three logical screens. Checks of
zret urii are omitted for brevity.

|Ln i i

*
*
*
*
*

set
screen
co I or
at
ur i i e

test
i ,16 : co lors (3)

Set up colors array (note tliat there
4*2*2 = 16 colors defined) and do the
screen Setup.

colors(1) ¢ 4,2,2
set up ; zb I ack , 3 , co I or5 (I)
d i sp I ay ; zwh i i e , zb I ask
1 Jr I JJ

This is in logical screen I.

2-225

-screen-

screen Select;2
color display;zred
at 1110
uJrite This is in logical screen 2.
screen select;3
color display;zblue
at 2j„ H
t^irite This is in logical screen 3.

Press NB<T to fill tlie top lialf of
screen .

pause keys = nerd
fill D,256;51l,511
at 241Jr
I^irite Press NEXT again to make the te?ct in

logical screens I and 2 reappear.
pause ke)+a = ne?ct
color display; -1
fill a,256;511,511

pause ke>+i = nerd
*
* Now plot something in screen I tliat
* will appear below the tern in screen
*2.
*
screen select; i
color display;zyel low
at lllfl
t^lrite This text is beneatti screen 2.

Pause
Screen
mode
fill
Pause

2-226

The yellow text above this line is in
logical screen 1, and i5 obscured
by tlle te?ct in screen 2.
F+e55 NEXT to erase everything in
logical Screen 2.
key5=nerd
se I ect ; 2
erase
SS full Screen erase in screen 2
key5=nerd

-screen-

Remember that each logical screen halves the number of possible colors.
Code that worked without logical screens may fall when you convert it
to work with logical screens because the -co I or d i sp I ay- commands
will fail due to the reduced number of colors.

Always make sure you are in the correct logical screen when you
execute palette-based commands (such as -co I or pa I et i e- and
-color replace-).

The -screen selec+-Command

Screen select ;screeTi

The -screen 5e I ect - command is used to select the current logical
screen. After its execution, all plotting will take place in the logical
screen specified.

The single tag of the -screen se I ect - command is the number of the
screen. It can be between 1 and *±nscreeTis*, the number of logical
screens defined by the last -screen setup-command. After
-screen gel ect -is executed, the reserved word -z5creeTi-is set to
screen.

The reserved word *zret urn* is set to one of the following values after
the -screen select -:

2-227

®

Command successful.

The display has a fixed palette.

The value of screen is out of range (it must be
between 1 and *znscreens*)

-search-

search var, chars,start , leTig±h, begin, return

The -5earcTi-command finds the first occurrence of a character string
in a list of variables. The variables specified can be any format (integer
or floating), but all operations are performed on 8-bit bytes. The
number of characters in the object string and the length of the searched
list are limited ordy by the length of your defined buffers.

The tags of the -Search- command are:

Tar

chars

st art

I engt h

beg i Tl

return

2-228

The variable containing (the beginning of) the
string to be found

The number of characters in the string

The starting variable of the list that is to be
searched

The number of characters in the list (must be
greater than or equal to one)

The position within list where search begins.
Specify 1 to begin searching in the ¢.rsf variable

The variable in which the /ow7!d position in the
list is placed. If the string is not found,
return = -1. The/ow7!d position is the number
of characters after 5t art where the string is
found.

®

-search-

Example using -€=earch-:

un it i eat
de f i ne
pack
pack
search
at
wr i i e

i , 8 : st r i ng (2 4) , f i nd (3) , cliars , I engt li , ref urn
string (I) S lengthesearching for characl:era
f i nd (1) S cTiar5S act
f i nd (I) , chars , st r i Tig (1 } , I engt h , i , ret urn
22U5
{a, String {1) , 24}

length = <s, length}
cTians = {5,char5}
rer[urn = {s,return}

The sample program above produces the display below. The first
character in the string is position 0. The string act was found at
position 18.

searching for characters

length = 24
chars = 3
return = 18

2-229

-searchf-

search f st r , I en , I i 5t , ent , st art , byt es , a f f , ref

The -Search f - command is used to search for strings of characterso
It searches a list of items, and the items can be further subdivided
into fields ("search-F" means search-in-a-field). The variables in the
tag need not be 8-bit variables, but all 1engths are calculated in terms
of 8-bit bytes.

sir

len

list

ant

st art

byt e5

off

ret

2-230

The variable containing the first character of
the string to be found; must be an integer

The number of 8-bit bytes in the string to be
found

The variable that contains the start of the first
item of the list to be searched

The number of items in the list to be searched

The item at which to start searching

The number of 8-bit bytes in each item (tag
mainum = 127)

The byte number, wi.£fez.7z the item, where the
comparison with st r i Tig starts (the field)

The item in which the first occurrence of
5t r i ng was found, starting with 0 for the first
item. Ifstringisnotfound, ref = -1.

®

•searchf-

For example:

Suppose you have a database that contains information about books.
Suppose also that you allow 100 bytes of information for every book.
The first 30 bytes of information contain the author; the next 30 bytes of
information contain the title. The other 40 bytes contain information like
publisher and copyright dates. The first three items in your list could
look like this:

1stByte 31stByte a.. 97th

iteml Tom Doe The Green Him ... 1978
item2 JohnGreen TheBlue sea ... 1956
item3 Sue smith Green Meadows ... 1980

Each item can be subdivided into fields. In the above example, three
fields are illustrated. One field is for authors, another field is for titles,
and a third field is for dates. One or more fields also exist in bytes
numbered 61 through 96.

The length of the string to be searched, pJ#s the length of the string to be
searched for, must be less than or equal to 1270 characters.

If you wanted to search for a title that begins with the word Grce7z, you
would use the following code:

pack strng (i) , i lengtti, Green
5earchf
strng (i) , i lengtli, booklst (I) , 2Jr,i,1JrH, 31, ret

The above -Search f - will search, starting with item 1, for a title that
begins with the word Grec7i. After the -searchf-is executed, ret will
be set to 2 because the third title starts with the word Gree7t.

2-231

0

-sendkey-

setldkey
pressed

es blank tag sends last key

sendke}+ stop SS send the named key

The -sencncey- command passes a key value to the central computer
(CPU). The blank tag fom` of -sendkey- sends the value for the last
key pressed.

A key is sent to the CPU o7l!y if a -sendkey- command is executed. For
example, if a Micro PLATO program is making a design while the CPU
is waiting at an (CPU) -arrow- for a student response, the Micro
PLATO program must include a -pause B , key5=a I I - and a
-senclke}+- in order for the student's typing to be received by the CPU.

If you want Micro PLATO to surrender complete control of the keyset,
use the -inhibit lkeys-command.

2-232

®

-set-

set var(1)¢23,16,35,63,-42,32
peint¢var,var+34, 2* (Tar-9) SS expr. ok
word {1) ¢341, 43 ,14, 53 ,12 , 43 ,
234, 2 , -432 , 342 SS con+ inue ok

The -set - command allows the author to assign values to consecutive
variables.

The first tag of the -Set - command specifies the first variable to be
assigned a value. This tag is fouowed by an assignment arrow (¢) and
then the value to be assigned to the first variable. The following tags
contain the values to be assigned to consecutive variables.

The size of the starting variable determines the byte size for the
following assignlnents. In other words, if the starting variable is an 8-bit
integer, and if the second variable is a 16-bit integer, the left-most 8 bits
of the second variable will be assigned the second value.

Expressions can be used as tags for the -set - command. System-
defined functions like 5 in (x) are not permitted in the -set -
co-and.

The -5ei: - command can be continued for more than one line. The
maximum number of tags for the -set - command is 95. If you try to
-set - more variables than you have defined, an execution error will
occur.

2-233

.set-

Example:

define i,a:arr(7)
**
un it i e5t
Set arr(I)¢1,2,3,4,5,6,7

The above -set - command will assign 1 to arr(1), 2 to arr(2), and so on.

Note that with the above define set, a -Set - command cannot have
more than seven tags. Exceeding seven tags would cause an execution
error because assignments would be attempted into variables that had
not been defined.

2-234

C

-sell,e--

5etperm length, place
setperm 4Jr,perm (i) SS any type variable ok

The -set perm- colnmand sets up a random permutation of integers
that can be sampled without replacement. This means that items can be
drawn at random from the hit with a -randp- command, and that once
drawn, a number will not be drawn again.

The first tag (I engt h) gives the number of items in the sample.

The second tag ¢ I ace) is the first of several consecutive variables that
are needed:

• The named variable a I ace) holds the number of items in the
permutation list.

• The next several variables hold flags for the elements in the
permutation; I engt h bits are needed.

The example above provides for random sampling without replacement
of 40 items. The contents of the 16-bit variable perm (1) and subsequent
variables wh be:

perm (1)

perm (2)

perm (3)

perm (4)

the number of items remaining to be sampled

flags for the first 16 items (#s 1-16)

flags for the next 16 items (#s 17-32)

flags for last 8 items (#3340)

2-235

.0

-show-

chow variable es shows only integers

Use the -show- command to display the integer contents of a variable.
If you want to display floating point (fractional) values, you must use
-showt -. A -Show-done on a floating point variable will round the

;%:i£::eti°anan2+Tit5e)§iio¥|3d2,d7¥#:y±h:#:±es.p#:din;Thsattasthaox:]ue
corrmand.

The -Show- command can also be embedded (see the -un-i i e-
command).

2-236

®1

-showa-

showa alpha(1} ,chars es must give the Tiumber
es of charactet=

The -shore- command is used to display character strings. The first
tag gives the name of the starting variable (this must be a variable, not
an expression or a constant). The second tag gives the number of
characters to display.

When using characters, it is usually most convenient to -de f i ne- an
array of 8-bit variables and to place one letter in each variable:

define i,8: letters(20)
**
showa letters{1) ,6 S$ 51ioi^is first 6 letters

es of the 2Jr-letter array

® If 16-bit variables are used, two characters can be stored-ne character
in each 8-bit segment.

Common ways of constructing character strings to be displayed by
-showa- include using -pack- and assigning character constants to
individual elements of the character array. For example:

calc char(I) ¢ "x"

2-237

-showb-/-showh-/rshowcp

shoi^Ib tar,places SS show in binar>/
shoi^ih hnum, 2 SS show in hexedecimal
sliowh var
shoi^io ovar, 3 SS allow in octal

The -showb-, -chouili-, and -showo-commands display the contents
of an I.7!feger variable in binary, hexadecimal, and octal notation,
respectively. These commands can also be embedded (see the -wr i i e-
co-and).

The first tag is the number to be displayed® It can be a constant,
variable, or expression.

The second tag is the number of digits to be displayed starting from the
Jozoesf order (right-hand) end of the word. The tag can be a variable or a
constant.

If var is an 8-bit integer containing the eight bits 11111000, the following
displays result:

co-and

sliowb tar , 8
chowb tar , 4
chouo tar , 3
5houe var , 2
showh tar , 2
sliowli var , I

displays

11111000
1000
370
70
F8
8

2-238

-showt-

sllowt express ion, I , r
shch var, 2, 5
shouit value,7 es third tag default i5 ff
shout var SS default format of 4,3
51iout int SS default format of 4,3 for
* i ut eger5

The -5houjt - command can be used to display variables in a tabular
format, and is also used to display floating point (fractional) values.

The first argument is the variable or expression that will be displayed.
The other arguments specify the format for displaying the expression.

The optional second and third tags, 1 and r, are the number of digits to
be displayed to the left and to the right of the decimal point. If r is # or
is omitted, no decimal point will be shown.

Note that if the expression cannot fit into the display format, a row of
asterisks (* * * * * * * *) is displayed. If the value is negative, a minus sign
(-) is displayed before the asterisks.

2-239

-size-

size 2
size 2,.5
§i ze var
si =e expr
size -2
size -2,-,5
size bold
size

SS one argument f arm
SS two argulnent form
es variables ok
SS expressioTls ok
SS negat ive Size ok

SS boldface writing
SS return to default

The Micro PLATO size command alters the size of drawings done with
the -rdraw-. Note that the Miero PLATO -si ze-command (except
for -a i ze bo I d-) does not work with text.

The tag bo I d causes text to appear in an expanded version in which
each dot of a size 0 letter becomes four dots.

The -5 i ze- command with no tag returns the terminal to the default
size that is -size o-.

2-240

•Specs-

specs
Specs
5Pecs
Specs
arrow

ansuerSP-
an5uer

ckspe I I , okcap
rloopE
punc , riomark , rio5pe I I , nockrio , okerd ra
SS clears previous -5pecs-
xpoS , ypo5 ; bu f f (i) , "
=pecs ncokTio
one
okerdra
one es eictra words al lowed

The -specs- command modifies the criteria that are used to judge a
response. If no -specs- command is executed, the response must
exactly match the judging command (with the exception of extra
punctuation). Allowable tags are nomark, Tiookno, Tioop5, nospe I I,
okcap, oketct ra, okspe 11, and pLmc.

Ordinarily, the -specs-options are set up once to govern the entire
operation of the -arrow-and are thus indented immediately after the
-arrow- command. However, -specs- can be used anywhere to
modify subsequent processing of responses.

The -specs- options are cumulative; while at an -arrow-, any new
-specs-options will be added to those already in effect. All -specs-
options are cleared by an -endarrow-.

The following are detailed descriptions of the possible tags:

nomark The usual response markup will not be displayed.

nookno No "ok" or "no" is displayed after the judging of the
answer is completed.

2-241

®

-Specs~

Hoops

noape 1 I

ckcap

okerd ra

okspe I i

PuTIC

2-242

Operators in student's response will not be
evaluated. This affects responses that could be
matched by -aTisv-or -wrongv-. After a
-compute-, *zret urn* will be set to 0 if a
-specs noops-is in effect and if the student
included an operator in the response.

Misspelled words in the student's response will be
marked as w7trecog7i!.zed instead of 7HisspeJJed. When
this command is in effect, the reserved word
*z5pe I I * will not be set, and the judging process
win be slightly faster.

Extra capitalization in the student's response is
allowed only with the first letter of each word. If
the author's response has a capital letter in it, that
letter must be capitalized in the student's response.

Extra words not listed in the judging command are
perndtted.
If a word would normally be marked as a
misspelling, it is treated as correct.

Only those punctuation marks specified in the
judging command are acceptable. (If-specs puTic- is not used, the response must
contain all of the punctuation marks included in the
judging command, but also can contain extra
punctuation.

®

®

-stop-

stop unit I
stop whither, x, unitone, unitwo, defunit

® The -st op-command indicates user-initiated branching in the same
way that the -ne3<.t - command works. See also the documentation for
the -next - command.

2-243

•sysfile-

5y5 f i I e
ays f i I e
ays f i I e
§y5 f i I e
5ys f i I e
sy5 f i I e
sysf i le
5y5 f i I e
sy§ f i I e

open ; f i p , name , i ype , dr i ve
open ; f i p , name , i ype , dr i ve , mede
creat e ; f i p , name , i }/pe , dr i ve , nsect or5
close; f ip
read ; f i p , Sect or , bu f fer , n5ecl: ors
wr i i e ; f i p , sect or , bu f f er , nsect ors
de5t roy ; f i p
rename ; f i p , netmame , newt)/pe
Seek ; f i p , a f fset , 5eekmede , po5 i i i on

sy5 f i I e readb ; f i p , bu f fer , i oread , nread
ays f i I e wr i i eb ; f i p , bu f fer , i oi^ir i i e , Tiwr i i i en

The -ays f i I e- commands are used to perform` input and output with
files at a lower level than the -ddt a i n-, -ddt aout - and -at i ach-
commands. They all.ow you to open multiple files simultaneously, as
well as ffles that are not datasets.

Basic information for -sue f i 1 e-

Since the -5>+a f i I e- commaLnd deals with any number of open files,
there must be a way to identify which file to operate on. This is done by
uusing a File Information Package (FIP). A FIP is a section of memory
that you provide to the -sysf i I e-command, which uses the FIP to
determine which ffle is being operated on. It is best to define a FIP as an
aanay of 8-bit integers. For example:

defiTie i,8:rip(zfipleh)

The size of the FIP is determined by the reserved word z f i p I eTi, which
is a condense-time constant. Its actual value should never be used for
anything but defining the size of a FIP.

2-244

-sysfile.

A FIP "#sf be prepared for use by first creating or opening the file using
the -5y5 f i I e creat e- or -s>+a f i I e open- commands. If you use a
FIP that has not been opened properly unpredictable results will occur.
You should never tamper with the contents of the FIP or use any values
that may be found in it. It should only be used in -ays f i I e-
co-ands.

Whenever a file name is specified in a -ays f i 1 e- command, it must be
terminated with a zero byte and stored in a variable that is at least 20
bytes long. The most convenient way of setting this up is with eight-bit
integers. For example:

define i,a:rip(zfipleTi)
i , a : name (20)

unit openfi le
pack name (1) Sstempfi le.imp
5ysfi le create; rip (1) ,name (I) , -1, 0,16

•0 This will create a file named temp f ile . tmp on Micro PLATO drive 0
that is 16 sectors long.

The i ype used in the -s}+a f i I e creat e-, -sy5 f i 1 e opien- and
-ays f i le rename-indicates the extension of the file. In general the
type, which is an integer value, becomes the extension. Its value may
range from -1 to 255. The fouowing is a summary of the spedal types:

-1

0

1

2

3

No extension-the file name is used as is (which
allows putting your own extensions on the files)

Lesson file (. i s n extension)

Dataset (.dat extension)

Character set (.chr extension)

No extension (same as -1)

2-245

•sysfile-

Any other number is simply concatenated to the base file name, with a
period between it and the base file name. For example:

pack name (1} S $5ystema
5ysfi le create; f ip, name (I) , 254, 0,16

win create a file named systema . 2 5 4 on drive 0.

Character set files present a slightly different interface. The name of the
file begins in the llth byte of the file name, rather than the first byte.
The first ten bytes of the file name are ignored, but they should be set to
the name of the character set file. For example, to open a character set
file the following code would be used:

un i i openchar
i , S : f i p (z f i p I en) ,1iane (2fl)

pack name (1) S Scharset
pack name (11) SScharset
sysfi le opeTi; fip (1} ,riame (1} , 2, D

Some file types have sysfent sectors. This is a single 128-byte sector found
at the beginning of files that have been opened with types 0 (lessors),
252 and 253 (if you want to open the file and have the system sector
treated as a normal sector, simply open the file with its extension and a
type of -1). The 0 seek position (see -ays f i le seek-) in files with
system sectors is actually the 128th byte in the file.

The -susf i le abel.i-Command

s}/a f i I e open ; f i p , riame , i)+pe , dr i ve
s}/a f i I e open ; f i p , name , i ype , dr i ve , mode

2-246

®

-sysfile-

The -eps f i I e open- command is used to open a file. It is analogous
to the -at i ash- command, except that it may be used to open any type
of file. The f i p, name, and type tags are as described above. The
dr i ve tag is a number from 0 to 9: a Micro PLATO drive number. The
mede is optional: it indicates the mode in which the file will be opened
(these values are the same as the mocle parameter for the -at i ach-
co-and):
-1 Read/write This allows the current user to read and

write the file, but all other users will only
be able to read the file.

0 Read-only

1 Shared

2 Exclusive

The user will only be able to read the file.
Others will be able to open it in read/write,
read and shared mode.

The user will be able to read and whte the
file. Others will be able to read and write it
as well.

The user will be able to read and whte the
file. Other users will not be able to access it
in any mode.

If mede is omitted, the default mode (read/write) is assumed.

The -susf i le create-Command

5}/a f i I e creat e ; f i p , Tlame , i }/pe , dr i ve , Ti5ect ors

The -ays f i I e creat e-command is used to create a file. It is
analogous to the -f i I e creat e- command, but allows you to create
any type of file. The f i p, iiame, i ype and dr i ve tags are the same as
those for the -f i 1 e opeTi-command. The n5ect ors tag specifies the
length of the file (in sectors). The contents of the file are undefined.
This length is not absolute-it can be increased simply by writing

2-247

-sysfile-

beyond the end of the ffle. The Trsect ors tag can be zero if you want to
create a file with zero length.

The ffle is opened in read/write mode after it is created. The FIP is
ready for use with other -ays f i I e- commands.

The -s`+sf i le close-command

sysf i le close; f ip

The -ays f i I e c I ose- command is analogous to the blank-tag
-attach-command. It closes the file indicated by f ip. You should
close FIPs when you are done with a file to make sure that the fnes are
freed up for use by other users (and also to avoid rurming out of space
for opened files-here is a limit to the number of files that can be opened
simultaneously)a

The -s`+sf i le read-Command

s}/a f i I e read ; f i p , sect or , bu f fer , nsect ors

The -ays f i I e read-command is analogous to the -ddt a i n-
command. It reads n5ect ors sectors of data starting at sector sect or
from the file specified in f i p into bu f fer. The buffer must be a storable
variable (of any type). The first sector in all files (except those with
system sectors) is 1, as is the case with -ddt a i n-a

2-248

C

-sysfile.

The -susf i le unite-command

s}/a f i I e un- i i e ; f i p , sect or , bu f fer , Tlsect ors

The -5ys f i I e wr i i e- command is analogous to the -ddt aout -
command. It whtes nsect or5 sectors of data from bu f fer to the file
specified by f i p starting at the sector specified by Sect or. The buffer
must be a storable variable (of any type).

TThe -susf i le destrou-command

s}+sfi le de5tro}/; f ip

The -ays f i I e de5t roy- command is analogous to the
-f i 1 e dest roy- command. It can be used to destroy any type of file.
The file specified in f i p will be destroyed. Note that the file must first
be opened by a -sy5f i le open-command (to set up the FIP) before it
can be destroyed.

The -susf i le rei'iame-Command

§)+a f i I e reTiame ; f i p , Tiei^mame , nei^It }/pe

The -ays f i I e renane- Command is similar to the -f i I e rename-
command, except that it can rename any type of file. The file must be
opened and its FIP is the first tag. The i'iewname tag is a 20-byte array
which must follow the rules about file names in -ays f i 1 e- commands.
The newt }+pe tag is one of the file types specified above. The file
indicated by f i p will be renamed and left open in read/write mode.

2-249

-que-

The -susf i le seek-Command

a)/i f i I e seek ; f i p , a f fset , 5eekmode , pos i i i on

The -s}+i f i I e seek-command is used to position the file pointer for
the -sysf i le readb-and -sysf i le writeb-commands described
below. It has no effect on the -ays f i i e wr i i e- and
-ays f i I e read-commands (those comlnands specify the starting
sector).

The f i p tag specifies the file in which the seek is to take place. The
a f fset tag specifies the location in the file that is to be sought to,
governed by the seekmocle tag. The a f f5et must be a floating point
value (although for small values, less than or equal to 32767, integers
will suffice). The 5eekmode tag indicates the point relative to which the
seek will be made. Acceptable values are:

Seek from the beginning of the file forwards.

Seek relative to the current position in the file
forwards (negative values are acceptable).

Seek from the end of the file backwards.

The pos i i i on tag will receive the location in the file (from the
beginning) where the file pointer is left. It must be a storable floating
point variable.

When a file is initially opened it is set to the beginning of the file (to the
system sector in files that have one). Generally, the first byte of the file
is 0. It is permissible to seek beyond the end of the file and write data
there (the file will be automatically lengthened), though reading beyond
the end of the file will result in zero bytes being read.

2-250

.sysfile-

The following lines of code illustrate how -ays f i I e seek- works:

5ysfi le seek; fip (I) ,O,fl,po5
sy5fi le seek; rip {1) ,J7, 2, pos
sysf i le seek; rip (1) , -pos,I, pos

Line 1 seeks to the beginning Of the file. Line 2 seeks to the end of the
file (putting the actual length in bytes of the file into peg). Line 3 seeks
relative to the current postion, back pos bytes (curently the length of
the file) to the begirming of the file. After this, the value of po5 will be 0.

The -s`+sf i le rEaclb-command

s}/a f i I e readb ; f i p , bu f fer , i oread , nread

The -ays f i I e readb-command performs byte-oriented (non-sector)
reads on files. It reads i oread bytes from the file specified in f i p into
bu f fer. The maximum number of bytes that can be read is 32767. The
actual number of bytes read is placed in nread, and might differ from
the number of bytes requested if the end of the file is reached before
i oread bytes have been read. Reading to the end of the file is not an
error: zret urn will be -1 and nread will be set appropriately.

Bu f fer and nread must be storable variables. Bu f fer can be of any
type, but nread must be an integer. It is not necessary to do a
-sysf i le Seek-before every -sysf i le readb-, if you are simply
going to pick up reading where you left off, but it is recommended that
you do one before the first such read.

The fonowing is an example of how you would copy one file to another
using the -sy5f i le readb-and -sysf i le uriteb-commands. It
makes an identical copy of one file (specified by f I and d i) in another
file (specified by f2 and d2). Checks on zret urn are omitted for
brevity, though you should always check it after each -ays f i I e-
comlnand to make sure the action succeeded.

2-251

-sysfile-

unit copy file(fl, dl, f2, d2)
i,8:fl (2JF) , f2(2Jr) SS file names
i'16:dl' d2

i , a: fipl (zfiplen)
i , 8 : fip2 (z fiplen)
i I 1 6 : r,w
i ' 1 6 : nr
bl = lJF24

SS drive i'iumbers

SS bytes uritten
SS bytes read

i , a : buf f (bl)
5y5fi le open; fipl (I) , fl (1) , -1,dl
5ysfi le create; fip2 (i) , f2 (1) , -1,d2,D
loop

sysfi le readb; fip (I) ,buff (1) ,bl ,nr
outloop nr = ff SS quit when Tio bytes read

sysfi le writeb; fip (1) ,buff (I) ,Tir, nw
i f nr ± TIN

* Error dich't write all b}/te5
endi f

end1oop
sysfi le close; f ipl (1)
sysfi le close; f ip2 (I)

The -s\+sf i le uriteb-command

ays f i I e i^ir i i eb ; f i p , bui f fer , i owr i i e , "^ir i i i en

The -ays f i I e un-i i eb- command performs byteroriented writes on
files. It writes i our i i e bytes to the file specified by f i p from bu f fer.
The maximum number of bytes that can be written at one time is 32767.
The number of bytes actually written is put into nun.- i i i en, which must
be a storable 16-bit integer. If the device being written to fills up,
zret urn will be set to -1 and nwr i i i €n will contain the number of
bytes written.

The same cautions about seeking that apply to -ays f i I e readb-
apply to -sy5f i le wri+eb-.

2-252

rsysfile-

-s`+sf i le- zre+urn Values

The -ays f i 1 e-commands set *zret urn* to indicate the success or
failure of the operation. The values are as follows:

®

®

®

-1

1

2

3

4

5

6

..7

8

9

10

11

12

13

14

Operation successful

Error reading from disk

Error writing to disk

System error

Disk unit not responding

File not found on open or destroy

Dupncate file nalne on create

Disk unit number is inegal or a bad file size

Create failed due to insufficient disk space
on a create, or other error

Diskette format bad

System error

Seek failed

Too many files open

Uhimplemented command

The file cannot be opened in the requested
mode because another user already has it
Open

2-253

•sysfile.

2-254

15

16

Permission violation: a -f i I e wr i i e-
was attempted on a read-only ffle, or a read
or write was attempted on a file that was
reserved by another user

Illegal value: the access mode value (or
seek mode, or some other tag) was not in
the correct range

®

-tabset-

tab5et start SS must be 8-bit variable
tab5et tar(1) se may be array
tabset SS clears previous -tabset-

The -i abset - command allows the author to specify which tabs will be
in effect when the user presses the TAB key.

The tag of the -i abset - command specifies the first of ten variables
that contain column numbers. The column nurhbers correspond to
screen locations for tab settings, and the column numbers can be
specified in any order. The variables indicated by the tag of the
-i abset - command must be 8-bit variables.

A -i abset - will remain in effect until another -i abset - command is
executed. A -i abset - with a blank tag clears the -i abset - setting.

Suppose the anay var contains the following column numbers:

Note that the column numbers do not have to be entered in any
specific order.

Suppose the following commands are executed:

tabset tar(1)
arrow 26";buf(I) , 3JF

2-255

-tabset-

If the student types TAB, a, TAB, a, TAB, a, the response would be
shorn as:

®

The variable var (2) , with a value of 5, would be ignored when TAB
is pressed because the arrow is at column location 10.

Likewise, since the first character position for the response is column 12,
variables var (6) and var (7) would be ignored when TAB is pressed.

Therefore, the first press of TAB goes to column 22, which is stored in
var (8) . So, the first a is plotted in column 22.

The second o would be plotted in column 29, which is stored in var (9) .

Finany, the third a would be plotted in column 33, which is stored in
tar (5) .

2-256

.text-

te?ct buffer, length
tend var, Bfl

The -i ext - command displays an alphanumeric buffer line-by-line.
An eight-bit byte with the value of zero marks the end of line.

first argument the first byte holding the text

second argument the length of text in bytes

The first argument must be a variable. The command is not affected by
-a ize-or -rotate-. The reserved words *zwherex*, *zwherey* are
updated after execution of a -i ext - command.

2-257

-texth-

i err n
bu f fer , I engt li , ref urn , f i rat Tio . I act no , I i ne I i h

The -i ext n- command displays an alphanumeric buffer line-by-line
and prefaces those lines with line numbers.

buffer

I engt h

return

f i Tit rlo

I a§t no

I i ne I i 11

starting byte of buffer

number of characters ®ytes) to display

variable holding next starting position; 1 + the
last character displayed

first number to be displayed; if 0, no lines are
displayed

last line number, maximum is 31; any number
larger than 31 will be truncated to 31

maximum number of characters per line

Line numbers will appear only at the left of the screen. The first
character space for line numbers will be character space 01. (Therefore,
one digit numbers will start in the second character space.) Two spaces
will separate the number and the beginning of the text.

After a -i end 11- command is executed, *zret urn* is set to:

-1 if the value of f irstno and the value of lastno are within
the range of 0 - 31

0 if the value of firstno and the value of lastno are not
within the range of 0 -31

2-258

-unit-

unit name SS maximum name length
is a characters

unit quack(a,b) SS arguments passed.

®

®

The -un i i - command identifies a #7t!.f of Micro PLATO code. The unit
is the basic entity of a Micro PLATO program. There is no special
marker for the end of a unit. However, the end of the present unit
occurs when either another -un i i - command or the end of the lesson is
encountered.

The tag of the -un i i - command is the name of the unit, optionally
followed by the unit arguments (see M!.cro PLATO Le7!g#nge Lfroz.£
Lz.br4zr].es for a description of this). The unit name can be any name you
choose, but it cannot contain more than eight characters. A unit cannot
be named x or q because these names have special uses with the
branching commands. It is good practice to choose a unit name that
reflects the contents or purpose of the unit.

The maximum number of -un i i -s in a Micro PLATO program is 253.

The commands like -j ump-, -got o-, -next -, -he I p-, and so forth,
refer to units specified by -uni i -commands. In Micro PLATO, there is
no default sequencing of units. Therefore, be sure to include a -neat -
command, or other sequencing command, in every Micro PLATO unit
except the last unit to be executed.

See also the dociimentation for the -do- command and M!.cro PLATO
Language Argument Passing.

2-259

-vbar-

vbar x , y

See the documentation for the -hbar- command.

2-260

vector tail ;1iead;1ieadsize
vector 31Jr;6#,4Jr;8
vector strt ;xhead,yliead;. 3
vector ;1#15
*
*
vector BJr4
*

-vector-

S$ 1iead5ize opt ional
SS f ine or coarse
SS relat ive headsize
es tail a± *zwherex*,
es *zwherey*, head at
es iHi5
SS tail at ",jr; head
es at 8lF4

The -vect or- command draws a vector (otherwise known as a pointer
or arrow) with its tail at the first location given and its head at the
second.

If the first location is omitted (-vect or ; 1 oc2 -), the tail is at the
current screen position. If only one location is given (-vector 9 lJF-), a
vector is drawn with the head at the specified location and the tail at
location 0,0.

Headsize > 1 or < -1 gives the approximate length (in dots) of the
arrowhead. A negative headsize produces an open arrowhead and a
positive headsize produces a closed one. Default headsize is 10 or 11
dots, depending on the orientation of the vector. Headsize between -1
and 1 gives the headsize relative to the length of the vector itself and is
affected by scaling.

When you use the optional headsize argument, if the tail is to be at 0,0, it
must be explicitly stated in the tag. For example:

vect or fl , JF ; x , y ; h5 i z

2-261

-widow-

w i ndow
w i ndow
w i ndow
w i ndow
w i ndow
w i ndow
w i ndow

xl , yl ; x2 , y2
22 ijr; I 83H

;X,y
; coarse
X,y
CoaT¥e

SS turns off all windowing
SS f ine grid
SS coarse grid
SS corTier at zwlierex, zwherey

SS corTier at Jr,Jr

The -w i ndow-command defines a "window" to delimit the area in
which plotting will take place. Anything drawn within the rectangular
area specified in the -w i ndow- command will appear on the display;
anything plotted outside it will not appear. Objects that cross the
window boundary will be clipped at the boundary.

All types of graphics objects are clipped, including lines, characters,
circles, Paints, etc® The -.Screen restore-, -erase- and
-screen set up- commands affect the entire screen regardless of the
current window setting, but objects plotted subsequently will stin be
windowed.

A blank-tag -w i ndow- command turns off all windowing. Use this
when you want to remove the effects of a previous -w i ndow-. The
window is also removed when a - j umpout - command is executed, or
when SHIFT-SToP is pressed. These three instances are the only times
when the effect of the -w i ndow- command is removed.

A two-argument coarse grid tag or a four-argument fine grid tag
specifies the two opposite corners of the window.

A semicolon followed by a one-argument coarse or a two-argument fine
grid location specifies a window with one comer at the current screen
location (*zwherex*, *zwherey*) and the other comer at the given
location.

A one-argument coarse or a two-argument fine grid tag specifies a
window with one comer at (0,0) and the other comer at the given
location.

2-262

®

-window-

The *zret urTi* reserved word is not set by -w i ndow-. If any of the
tags are outside the screen bounds they will be treated as the screen
bound.

The -w i ndow-command can be especially useful for replotting small
parts of the screen that have been erased by simply executing the code
that plotted the original display. Since most of the display will not be
plotted, it win be faster.

Note that this commaLnd does not work the same way as the -w i ndow-
command does on the central PLATO system-in Micro PLATO azJ
plotting is windowed, while on the central PLATO system only line-
drawn objects are windowed.

2-263

-write-

i^irite Write something on ttie display.
i^tritec numSSSDi§play for one.S

Display for two.S
Display for tliree or greater.

The -un-i i e- and -un-i i ec- commands are used for placing text on
the display. The tag of the -wr i i e- command is displayed at the
position specified by a preceding -at - command. If the -at - is
omitted, the text will be at the culTent screen position, *zwherex*,
zwherey.

The -un-i i ec- command (write conditionally) displays one of the
arguments in the tag, depending on the value of the expression. The tag
of -wr i i ec- can be continued (that is, extended over more than one
line). A ma>dmurn of 99 tags are allowed in -un-i i ec-.

The only separator (delimiter) allowed in the -wr i i ec- is the universal
delimiter (S). To make this symbol, first press the ACCESS key (SHIFT-a),
then press the comma key. If nothing is to be written for a particular
value of the expression, then nothing should appear between the
separators.

Embedded disDlav commands

Commands that can be embedded in a -wr i i e- or -wr i i ec- statement
are:

at shoi^i shoi^ih
at i'im shoi^ia shoi^io
co I or 5hoi^ib choi^rt

2-264

®

•vlite-

The following shows the display commands and how they would be
used in a -uir i i e- command.

Normal form

at al,a2
atrm al,a2
show al

showa al,a2

51iowb al,a2

chowo al,a2

showh al,a2

showt al,a2,a3

color display;zred,zblue

Embedded form

I^irite tat,al,a2}
i^irite {atrm,al,a2}
unite {5,all

or uirite {slioi^i,al}
unite {a,al,a2}

or i^/rite {shoi^ia,al ,a2}
unite fib,al,a2}

or write {shoi^ib,al ,a2}
unite {o,al,a2}

or i^irite {5hoi^io,al ,a2}
unite ch,al,a2}

or i^irite {shoi^ih,al ,a2}
write {t,al,a2,a3}

®
or write {shout,al,a2,a3}

write {c, zred,zblue}
or i^trite {color,zred,zblue}

The a 1, a2, and a3 are the arguments of the commands. For -showt -,
the a2 and a3 arguments are optional. For color, either the foreground
or the background color can be omitted, but at least one must be
present. For the other all embedded commands all arguments must be
Present.

The embedding characters, { and } , are written by typing AccEss-0 for {
(the begin embed mark) and ACCESS-1 for } (the end embed mark).

Examples:

write You answered {s,nl};
The right answer is {s,n2}

*
unite Last time you Said "{a,nl}"!
*
writec nlSStest of shout {i:,nl}S

2-265

test of slrow {choiw,v5}S
test of 5howo {o,nl},S
test of chowa {a,nl}S
test of at tat,1615>S
test of atnm {atnm,1615}

n>0
logn ¢ log(n)

end i f
i^iritec whatSLet 's not talk about the

log of a negative nurnber!S
Zero can.i have a log, unfortunately.S
The log of your number is
{t I logn} -

Notes on embed

In general, the lines

i^irite PLflT0 does not agree that {s,nl}is
the ansuer.

have an effect similar to the following three commands:

l^Jrite PLflTO does nol: agree that
* hidden Space after "that" t
show n 1
i^trite is the answer.

However, when processing at an -arrow-, there is a major difference
between these two forms toesides the amount of space required for
each)-they are erased differently when they appear as answer-
contingent whting after an incorrect response.

2-266

®

-write-

Micro PLATO automatically erases the tag of the last display command
when NEXT, ERASE, SmFT-ERASE, EDIT, or SHIT-EDIT is pressed after an
incorrect response. Because the embedded form uses only 1 display
colnmand, the entire comment will be erased. For the second example,
only the last -wr i te-will be erased ("is the answer."). The embed
feature is quite handy in situations like this.

No more than 62 embed symbols, or 31 pairs of embed symbols are
allowed in one -wr i i e- command.

Be aware that when a student presses ERASE at an -arrow-, the last
-wr i i e- or -wr i i ec- is erased by changing to mode erase and re-
executing the last -wr i i e-statement. This means that any changes to
the values of the variables you are displaying will prevent them from
being properly erased.

Indexing (n2¢n2 + I) or randomly picked nulnbers, for example, could
have one value when the embedded -show- is displayed, but another
value when the embedded -show- is displayed again in mode erase.

Mode bold

The writing can also be done in boldface, which is twice the standard
size. To change permanently into boldface, use -Size be ld-. For
individual characters, use:

ACCESS-T or SHFTrfe, 8 to start boldface

ACCESS-S or SHFTI`4, 9 to back to normal

2-267

-write-

Additional notes on -write-and -writec-

• The functions *alog*, *arctan*, *co5*, *exp*, * ln*, * log*,
s in and the ** (exponentiation) operator cannot be used in
embedded show commands in the tags of -un.` i i e- and -wr i i ec-.

• The number of tags possible in a -wr i i ec- is limited by the amount
of text and cannot exceed 100. Only with extremely short tags will
the possible number of tags even approach 100. When the -wr i i ec-
gets too long, it causes a "unit too long" condense error.

• A -writ e-command with no tag does not plot any characters on the
display.

• After a matched answer-type command (like -aTiswer- and
-wroTig-), a -wr i i e- command without a preceding -at -
command will place the writing on the third line directly below the
beginning of the student's response (for example{ at the "arrow
position" + 302).

• With a continued -wr ite-statement the left margin is established by
the preceding -at - command. In somewhat the same manner, any
sentence that is too long to fit on one line will be continued on the
next line at the margin position set by the preceding -at - command.

• A -write-command with no -at -command directly preceding it
will begin writing in the character space next to the position of the
last display activity.

Here is an illustration of the use of -wr i i ec-:

i^Jritec mistakeSSYou have made no errors.S
You have made I error.S
You have made {s,mistake} errors. FEeturn
to part C for revieuj.

In this example,.when the value of in i st ake is a negative number,
nothing will be displayed because the two separators immediately
fouow each other.

2-268

®

®

®

-wite-

When the value of mi stake is 0, the message You have made no
errors will be displayed.

Similarly, when mistake equals 1, You have made 1 error will be
displayed.

When the value of the expression is 2 or larger, a message will appear
that displays the number of errors (using an embedded -51iow-) and
tells the student to return to a prior section for review.

2-269

-Wrong-

wrong <a an> [pink red] elephant

See the documentation for the -ansuer- command.

2-270

®

-Wron8C-

wrongc (expr)Sthis is the negative answerS
tliis i5 the zero an5uerSan5wer for oneSS
aTisuer for three or greater

See the documentation for the -aTisuerc- command.

2-271

•Wron8V-

wrongv SHH,lH SS range is + or -"

See the documentation for the -ansv- command.

2-272

-xin.

xin device, buffer, length
xout device, buffer, length

® The commands -x i n- and -xout - are for communication with external
devices Oike serial ports).

Dev i ce is the device address. Devices 0 and 1 (interrupt mask) are not
permitted.

Bu f fer is the starting word of the buffer into or out of which the data is
moved. It must be a variable into which something can be stored.

Lengt li is the number of inputs expected in 8-bit bytes.

With a 16-bit quantity, -xout - will send the upper byte first.

An -x in-with a length of 1, used with a 16-bit variable, will read into
the upper (or most significant) byte of the variable.

The addresses for peripheral devices are hardware specified. The
following channels have already been defined for existing equipment:

(not available)
(not available)
Serial RS232 Data
Serial RS232 Control
Serial port selection

See Micro PLATO Language Serial Channel Input /Output for fnfo:rrr\at±or\
on how you can use the -x i n- command to control the serial ports.

2-273

-xndt-

rmit value

When -3<m i i - appears in a Micro PLATO program, it sends infomation
fo the CPU. Similarly, when -xm i i - appears in the CPU PLATO section
of your program, it sends data to the terminal for processing. It is
important to keep in mind this dual role of -xm i i -.

The Micro PLATO -xm i i - command sends a single 8-bit value to
PLATO as an external key. CPU PLATO will process this input as a
normal external key. Keep in mind that if you -xm i i - a value of 1, the
reserved word *key* in CPU PLATO will contain a I Hfl 1, because an
external key has an extra bit attached to indicate the source of the key.

2.274

®

-xout-

2-275

®

xout devi ce, buffer,length

See the documentation for the -x i n-command.

•Zelo-

define alpha,beta,gamma(4) SS Micro PLFIT0 define
de I i a , eps i I on

*
zero a I plia
zero beta, 3
zero Start , length
zero SS clears all variables

The o7ie-fag /or77c of the -zero- command sets the value of the named
variable to zero.

zero a I pha
calc alpha¢H

SS Tliese are equivalent

The fzoo-£ng /arm sets the number of consecutive variables specified by
the second tag to zero, starting with the variable named by the first tag

The -zero- with no tag sets ¢jJ of the defined global variables to zero.

The two-tag forln of the -zero-command must be used with
EXTREME cAurloN.

The size (number of bits) of the variables that will be zeroed is
determined by the type of variable mentioned in the first tag.

define alphalbeta(3)
f,4a: list(22)
i,B: lettr(12)

zero alpha, 5

2-276

®

®

.Zero-

Since a I pha is defined as a 16-bit variable, five consecutive 16-bit
packages will be zeroed. Thus a I pha, bet a (i) , bet a (2) , bet a (3)
AND the ¢.rsf Oeft-most) 16 bits of I i5t (I) will be set to zero. This is
probably not what was desired!

When the variable named in the first tag is a floating point variable, then
the "package" size is 48 bits.

zero list (2#) ,4

The -zero- above will zero the last three floating point variables of
I ist : I ist (2cO ,I ist (21) , and I ist {22) . The fourth "package" will
cause lettr {1) through lettr (6) to be set to zero, because one 48-bit
byte covers six 8-bit variables.

2-277

®

Chapter 3

• ¥s±ec:3oPE%Ei:£=grurage

Pseudo Commands
C
*

S/block
S/endlabel
S/label
S/list
S/touch
S/use

®

®

Pseudo Commands

The Micro PLATO Language pseudo commands perform` five major
purposes. They are:

• To allow comments within the code

• To break the code into logical blocks

- For the source code editor

- For the display editor

• To generate touch area coordinates

• To use code from other lessons

• To set printing directives

The pseudo commands are described on the following pages.

3-1

-C-

3-2

The *, c, and es comments caLn be used in your lesson to insert notes
and documentation. For example:

un it sanp le
If ''" i5 tlie first character of the liTie,
*the line i5 ignored (except for S/block and
S/use) .
c The "c" folloi^ied by a space is equivalent:
c to "*".
S Tlle "S" folloued by a space also equals a
S "*"-
S
calc v4 ¢ y**3 SS everything after two
* signs in tlie tag f ield
* is ignored

The SS causes spaces after the last non-blank character in a -wr i i e-
to be ignored:

write hal lo, {a,Tiame} Ss greet student
* t these spaces are
ignored

If you want to use both trailing spaces and a SS comment, end your
trailing spaces with an extra "space and backspace." Use *, c, and SS
liberally. You might want the c comments to be temporary and the *
comments to be permanent.

3-3

* Fli'i}/ line begiTming with ''*", "S.' or "c '. i5
* treated a5 a comment (except for the "S/"
* direct ive coiTmaTids) .
*
calc a ¢ 6 es aTiything past the SS is a
comment

The -*-, -S-, -c -and -SS-commands are used for commenting.

See also the description of the -c - pseudo command.

-Sfolock-

3-4

Sthlock + mydefs
* Cede that is in block mydefs

S/block - oldcode
* TTii§ cede i5 partialled out.

S/block + newcede
* This c:ede is partialled in.

The -S/b i ock- command is used to name blocks of code within a
source code file. A block of code extends from one -S/b 1 ock-
command to the next -S/b I ock- command or to the end of the file.
The source code editor automatically generates -S/b 1 ock-
commands at user-specified points. The command is also used in
conjunction with the -S/use- command. Additionally, it anows you
to toggle the condensing (partialling out) of blocks of code.

The tag of -Stla I ock- is the partial flag, followed by a blank,
followed by the name of the block. This name can be up to twenty
characters in length, and an characters are legal.

The partial flag is either + or -. If it is +, the text following the
-S/block- is condensed. If it is -, the text following -S/block-is
ignored (partialled out). Both forms affect all lines of text following
-S/b I ock- until a -S/b I ock- command with the opposite flag or
the end of the file is encountered.

All lines appearing after a -S/b I ock- command and before a
subsequent -S/b I ock- command (or the end of the file) are said to
be in the block®

-S/endlabel-

3-5

S,end I abe I

The -S/end I abe 1 - command is used to mark the end of a
-S/ I abe I -ed area of code for use in conjunction with the display
editor.

See the description of the -S/ I abe I - command and the D!.splay
Editor chapter of the Micro PIAT0 Authoring System User's Guide
for more information.

-SAabel-

3.6

S/label this is a label

The -S/ I abe I - command is used to mark the beginning of a
-S/ I abe I -ed area of code for use in conjunction with the display
editor. The display editor automatically generates -S/ 1 abe I -
commands at user-specified points. A label's name can be up to
fifteen characters in length, and all characters are legal.

See the Display Editor chaLpter of the Micro PIATO Authoring System
LJscr's Gzf ..de for more information®

-SAist-

3-7

S/list directive

The -S+ I i st - command is used to indicate special listing directives
for use with the Micro PLATO Authoring System Print Utility. The
available -S/ 1 i §t - directives are:

S/list blocks,all
S/list blocks,in
*
a/list blocks,out
*

S/list eject
*

a/list height'#
*

S/list label,text
*

S/list legend,on
*

S/list legend,off
*

S/list linenum,on
*

S/list linenum,off
*

S/list list,on
*

S/list list,off

as process all blocks (default)
SS process partialed in blocks
SS only
SS process part idled out blocks
SS only

es page eject
SS (same as -S/list page-)

SS page height ,
SS # a 6 {default = 62)

SS print a label within the
es listirlg

es print the symbol legend
es (default)
SS don't print the Symbol
SS legend

SS print listing line numbers
es (default)
SS don't print listing line
SS numbers

SS print tlie cede listing
SS (default)
SS don't prinl: tlie code listing

®

•SAist-

S/list need,#
*
*

S,list page
*

S/list skip,#
*
*

S/list spacing,#
*
*

S,list title'text
*

S/list width,#
*

S/list xr€f,on
*
S/list ?<ref,off
*

se lines needed on remaiTider of
SS page, # = 1 + theight - I) I
SS (default = 1)

se page eject
es (Same as -S/list eject-)

SS skip {# * spacing) liTiesp
SS H + ((height -1) / Spacing)
ee (default = ft)

es vert ical spacing,
es # = 1 + theight - 1)
es (default = I)

es print a title at the i:op of
ee eacli page

SS page widtli, # = a" + 132
SS (default = 132)

SS compi le and print tlie cross
es refereTice table (default)
SS don't compile and print the
SS cross reference table

See the Print Utility chapter of the Micro PLATO Authoring System
Uscr's G#i.dc for more information.

3-8

®

•S/touch.

3-9

a+toucli ijFj}, igfl, 2jrjr, 2iFiF

®

®

The -Sri ouch- command stores pixel (single-dot) touch area
coordinate information. The -S/i ouch-command is automatically
generated by the display editor at user-specified points. The touch
area coordinate information can be used by the user to manually
enter the p () touch portion of the -keytype-command via the
source code editor.

See the description of the -keyt ype- command and the D!.splay
Editor cha[pter of the Micro PIATO Authoring System User's Guide
for more information.

•S/use-

S/use I es5on , b I ock
S/use mai n, defi nes

The -S/use- command requires two tags, separated by a comma.
The first tag is the name of the file and the second tag is the block
name (the tag of a -StlD I ock- command in the named file).
Partiaued-out blocks can be -S/use-ed.

The file name is a standard DOS file name. If an extension is not
included, then the extension on the main file (the one used when
calling the condeusor, most likely .MSC) is used.

The block name can include any legal character and is limited to 20
characters.

NOTE: If you want a SS comment on a -use- command, make sure
it lies beyond the 20 characters used for the block name. If it falls
within the 20{haracter limit, the SS construct may be used as part of
the block name.

For example, in the following case, b I ockname is used for the block
name (the 11 spaces following it are stripped off):

S/use I esson , b I ockname SScomment

However, in the case below, SScomment falls within the 20-character
limit and blockname escomment becomes the name of the block:

S/use lesson, blockname SScomment

The -S/use- command can be used to bring in common definitions
from a file that two separate lessons use.

See also the description of the -S/b I ock-pseudo command.

3-10

®

®

.,.---

Chapter 4

® Micro PLATO system Reserved words
System Reserved Words

zanscnt
Zar8S
Zar8Sa
zbcolor
zbpalette
zbuttons
zcharheight and zcharwidth
zclock
ZCO-
zdata
zentire
zextra
zfcolor
zfiplen
zfpalette
zjcount
zjud8ed
zkey

Toinch in *zkey*
Notes on *zkey*

zlbuttons
zldone
zmode
znbuttons
znscreens
zntries
ZOpcnt
zorder
zpalette
zplanes
zptrlx and zptrly
zptrx and zptry
Zrecs

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
19
20
22
23
24
25
26
27
28
29
30
31
32
33
34

zrestart
zretum
zrouten
zscore
zscreen
zscrrecs
zspell
ztouchstatus
ztouchx and ztouchy
Zttype
Ztstype
zwcount
zwherex and zwherey
zxpixels and zypixels

35
36`37

38
39
40
41
42
43
44
45
46
47
48

®

Svstem F3eserved Words

System reserved words are systemrdefined variables and constants that
provide information that may be of use in a lesson. The names of keys
are also reserved words. For example, *znt r i es* contains the number
of attempts this particular user has made at the current arrow.

The names of function keys are also reserved and can be used in
expressions. For example:

j u,mp zke}/=zk (Tielp) , revu, x

You should 7tof define the names of reserved words in your -de f i i'ie-
command. If you do, they will not have the system meaning.

You can use reserved words in any Micro PLATO expression, but you
cannot change their values directly.

4-1

®

*zausenr

The variable *zaTesnt * contains the number of answer-judging
commands encountered before matching the student's response:
-aris4Aier-, -wroTig-, -arisuerc-, -t^iroTigc-, -ok-, -Tio-, -ansv-,
-LJJrong`r-, -keyi^iord-, -exact -, -exact w-.

Values for *zan5cnt * are:

>0 number of response matched

-1 no match was found

See the documentation for the -arrow- command for more information.

4-2

®

zar8s

The reserved word *zargs* contains the number of arguments that
were passed in an argumented -do-, -got a-, -j ump-, -j unpTi-, or
-ref urTi-. (Also refer to the Argc/"e#£ PassI.7tg section.)

4-3

®

zargsa

The system reserved word *zargsa* contains the number of arguments
that have had their addresses passed in a -do- command. The value
reflects the actual number of address arguments passed and does not
count omitted arguments.

do arf (;;x„y) es *zarg5a* = 2, not 3

The word *zarg5a* is not altered if address arguments are not
expected. For example:

don-
unit iiame SS zarg5a is not altered
because

SS address arguments were not
SS expected by unit nana

do none
unit name(;;x) SS zarg5a i5 altered

See also the documentation for -do-, -un i i -, and the Argwme7!£ Passi.7!g
section.

4-4

®

zbcolor

The reserved word *zbco I or* contains the current background color.
It can be set by the -color display-and the -color palette-
commands. If you save the value of *zbco I or* in your own variables,
make sure that you use a floating point variable. A value of -1.0
indicates the transparent color.

See also the documentation for -co I or- and *z fco I or* .

4-5

®

zbpalette

The reserved word *zbpa I et i e* contains the current background
color palette number. This reserved word is set by the
-color display-and the -color palette-commands.

On machines that have a fixed-palette (*zpa 1 et i e* = 0), the value of
zbpa I et i e is undefined.

For an example of how *zbpa I et i e* can be used, refer to the
-co lor replace-documentation.

See also the documentation for -co I or-, *zpa I et i e* and
z fpa I et i e .

4-6

zbuttons

The reserved word *zbut i ons* returns the current status of the
pointing device's buttons.

For a mouse, the low order bit of *zbut i on§* is the leftmost button on
the mouse, continuing up in bits and to the right in buttons.

For example, using a two-button mouse, if the user presses the left
button, *zbut i otis* will be set to oOO1. If the user presses the right
button, then *zbut i ons* will be set to o002.

See also the documentation for *z I but i ons* .

4-7

zchalheight an d *zchaLrwidth*

The reserved words *zcharhe i ght * and *zcharw i dt h* give the size
in pixels of characters to be plotted on the screen. Currently, they use
the default values of 16 and 8, respectively.

These reserved words are useful when determining the number of lines
and number of characters that will fit on the display. For example:

charswide = zxpixels / zcharwidth

and

linesdot^m = zypixels / zcliarheight

4-8

zdock

The reserved word *zc I ock* measures elapsed time. It is incremented
once every second. It starts at zero each time Micro PLATO starts up
and continues incrementing. Since it is a 16-bit variable, it will wrap
around after approximately nine hours. It should be used only for
measuring elapsed times ®y subtracting the earlier time from the later
tine).

4-9

tzcomms

The reserved word *zcomm* allows the user to do a limited amount of
tiing.

When using *zconrm*, a counter is incremented all the time, even when
the user is not connected to a phone line. The time interval depends on
the terminal type.

The system reserved word *zc 1 ock* should be used to measure
elapsed time greater than one or two seconds.

See also the documentation for *zc I ock* .

4-10

®

®

zdata

The system reserved word *zdat a* gives the current number of data
bytes available that have been sent from the CPU by an -ton i i -
command. The value of *zdat a* is updated after a -pause- command
and after a -rece i ve-command is executed.

See also the documentation for -rece i ve- and -7<m i i -.

4-11

zentire

The reserved word *zent i re* is used in judging. When an answer is
judged "no" and markup occurs, this variable can be checked to see
whether all the words are there.

The values of *zent i re* are:

-1 all required words present

0 one or more missing words

See also the documentation for -arrow- and -ansLuer-.

4-12

®

zextra

The reserved word *zerd ra* is used in judging. When a
-specs okerd ra- command has been executed in an arrow and an
answer has been matched, *zext ra* indicates whether there are any
extra words in the user's response.

The values for *zext ra* are:

-1 no extra words present

0 extra word(s) present

See also the documentation for -arrow-, -answer-, and -specs-.

4-13

zfcolor

The reserved word *z fco I or* contains the cunent foreground color. It
can be set by the -color display-and the -color palette-
commands. If you save *z fco I or*, make sure that you use a floating
point variable. A value of -1.0 indicates the transparent color.

See also the documentation for -co I or- and *zbco I or* .

4-14

zfiplen

The reserved word *z f i p 1 en* contains the number of bytes needed to
store an FIP (File Information Package) when using the -ays f i 1 e-
co-ands.

The fouowing is an example of how *z f i p I en* should be used:

unit open file(filename, type, drive, rude)
merge , g I oba I :
i,8: filenane(*)
i,8: type
i,8: drive
i,8: mode
i,8: rip(zfiplen)

*
5y5 f i I e open ; f i p , f i I eriane (1) , i ype , dr i ve , mode

• . See also the documentation for -ays f i I e-.

4-15

zfpalette

The reserved word *z fpa I et i e* contains the current foreground color
palette number. This reserved word is set by the -co I or d i sp I ay-
and the -color palette-commands.

On machines that have a fixed-palette (*zpa I et i e* = 0), the value of
z fpa I et i e is undefined.

For an example of how *z fpa 1 et i e* can be used, refer to the
-co lor replace-documentation.

See also the documentation for -co I or-, *zpa I et i e* and
zbpa I et i e .

4-16

zjcount

The reserved word *z j count * indicates the number of characters in the
user's response at an arrow. The maximum that it can be is determined
by the last tag of the -arrow~ command or by a -I ong- command.

See also the documentation for -arrow-, -I ong-, and -force-.

4-17

zjudged

The reserved word *z j udged* gives the current judgment at an
-arrow-. After response matching commands, it is set appropriately
for that command. The word *z j udged* can be set directly by the
-j udge- command.

The values it can have are:

-1 judged "ok" (after -arisuer-, -aTisv-,
-keyword-, -exact -, -i udge ok-,
-judge okquit~)

judged "wrong" (after -urong-, -wrongv-,
-judge wrong-, -judge rioquit-,
-exactw-)

judged "no" (after -no-, -j udge no-)

not judged yet (-j udge exdent -or did not match
an answer judging command.)

See also the documentation for -arrow-, -j udge-, and -answer-.

4-18

zkey

The *zkey* reserved word contains the value of the last input received,
including keypresses, touch inputs, and external inputs.

The value for *zkey* is always ten bits: ssdddddddd. The two left-
most bits are source bits, and the eight right-most bits are the data bits.

The source bits tell where the key input originated:

00 = keysetinput

01 = touch panel input

10 = external input

11 = (notused)

In most casLes you will be interested in a key that the user pressed at the
keyset. You can then use the value of *zkey* directly to compare
against key values. For example, zkey = zk (help) .

In order to receive external inputs in *zkey*, you must first execute an
-enab le ext -command. If you have a -bu f fer-command in effect,
the external data will be processed by that command. If you haven't
done an -enab I e ext -, the external data will be available through the
-x i Ti- command as norlnal.

Touch in *zkeu*

The x,y address of the square touched is placed in *zkey* in the
followhg bit format:

1sttwobits {01} 01xxxxyyyy
mean "touch input"

TThe xxxx bits range from 0 to 15" is on the left, 15 on the right.
The yyyy bits range from 0 to 15 alscL0 is on the bottom, 15 on the top.

4-19

zkey

For example:

Lower left touch square = o400 = 0100000000 binary = 256 decimal.

Upper left touch square = o417 = 0100001111 binary = 271 decimal.

Upper right touch square = o777 = 0111111111 binary = 511 decimal.

Lower right touch square = o760 = 0111110000 binary = 496 decimal.

Remember that this is a 16-by-16 coordinate system.

Here are two functions that can be whtten to get the touch location from
zkey:

touchx = ((zke)/ Sclss I) SmaskS o74JJ) + 16

touchy = ((zke)+ Scls$ 5) Smasks o74Jr) + 16

Notes on *zkeu*

When input is received, the keycode for the input is put into *zkey* .
If Micro PLATO is waiting for a user response after an -arrow-
command, a series of internal codes are also stored sequentially into the
student response buffer®

A capital letter 8 has a keycode of 98 (ol42) that is placed in variable
zkey. Intemally, this is stored in the student response buffer as two
6-bit codes in consecutive 8-bit bytes: a shi ft code (o70) and the code
for b (o02).

However, you should never use numeric constants to test for keys. You
should always use the *zk* function instead, both for readability and
transportabhity.

4-20

zkey

4-21

®

For example:

un i i quack
al: 1HIH
i^irite Press a ke)/=
enable touch
Pause
at lllJJ
unite TTie keycede was {o,zkey,3).
i f zkey

ur i i e
elseif zkey

wr i t e
elseif zkey

ur i i e
else

ur i i e
end i f

zk (nerd)
You pressed NEXT.

zk (a)
You pressed little a.

zk (fi)
You pressed big a.

You pressed something else.

When a timed -pause-command expires, *zkey* is set to -1. For
example:

unit i imer
mode rewr i i e
at 91H
write Wait ing
loop -1

Pall,Se
at
if

else

end i f

5 ' keys=a 11
11 lfl

zkey = -1
write Five seconcls passed.

write You pressed {o,zkey, 3>.

end1oop

See also the documentation for -arrow-, -pause-, -enab I e-,
-c I rke}+-, and -get key-.

zlbuttons

The reserved word *z I but i ons* returns the status of the pointing
device's buttons that caused the last event occurred. It has the same
interpretation as *zbut i ons* .

For touch panels and light pens, *z lbut i oTi5* win always be 0. For a
graphics tablet stylus, the low order bit of *z I but i ons* will be set to 1.

See also the documentation for *zbut i ons* .

4-22

zldone

The reserved word *z I done* is used in conjunction with the -I e55on-
command to indicate the completion status of the lesson.

The values of *z I done* are:

lesson complete

lesson incomplete

lesson has no logical end

See also the documentation for -1 es5on-.

®

®

4-23

zmode

The *zmocle* reserved word gives the current whting mode.

The values of *zmede* are:

-1 mode erase

0 mode rewhte

1 mode whte

2 mode inverse

3 mode complement

For example:

do
zmode , eras i Tig , rewr i i e , wr i i i ng , i Tiverse , camp 1 mnt

The conditional -mede- command ®elow) will switch to mode write
from mode erase or switch to mode erase from mode write.

mode zmede, write, x, erase, x

See also the documentation for -mode-.

4-24

znbuttons

The number of buttons that are available on the mouse is kept in the
reserved word *znbut tons*. Its value is 0 for a touch panel and 1 for a
graphics tablet.

4-25

znscreens

The reserved word *znscreens* contains the current number of logical
screens that have been defined. The -screen set up- command will
Set *znscreen§* to the value of the iiscreens tag. Initially, it is set to
1.

See also the documentation for -screen-.

4-26

zntries

The reserved word *znt r i e5* is used during judging. It gives the
number of attempts that the user has made so far at the arrow.

®

4-27

zOpcnt

The reserved word *zopcnt * gives the number of operations
performed in student response. It is set when the expression is
Compiled as with -an5v-, -uroiigv-, or -comput e-.

If the response can be evaluated but no operations were performed,
*zopcnt * = 0. If no part of the response can be compiled, *zopent * =
1. If *zreturn* after a -compute-is not equal to -1, *zopent * will
not be set.

For example:

Student Resconse

-2

2+2+87

-10+9+di

*zODcrrt *

0

2

2

See also the documentation for -comput e- and -ansv-.

4-28

zorder

The reserved word *zorder* is used in answer judging. It is set to -1 if
the words in the student's response are in the correct order and 0 if they
are not. This information is useful only for an -answer-, -wrong-,
-ariswerc-, or -wrorigc- command.

4-29

®

®

®

zpalette

The reserved word *zpa I et i e* can be used to determine if there is a
color palette in the machine.

The values of *zpa I et i e* are:

-1 programmable color palette present in the
machine

no palette

4-30

zplanes

The reserved word *zp I anes* contains the number of planes available
on the curent machine. Its value may go from 0 to Ti, where n is the
number of planes.

4-31

®

zptrlx and *zptrly*

When a pointing device event occurs, the reserved words *zpt r I x*
and *zpt r I y* are set to the coordinates at which the event occurred.
The range of coordinates is 0 to 511 in the x and y directions. For touch
panels, this coordinate will be the center of the touch square. For other
pointing devices, it will be the dot on the screen at which the input
occuned.

At the beginning of a lesson, the values of *zpt r I x* and *zpt r I y*
will be -1.

4-32

zptrx and *zptry*

The reserved words *zpt rx* and *zptry* give the current (x,y)
location of the pointing device. These reserved words are undefined for
a touch panel.

4-33

zrecs

The reserved word *zrecs* gives the number of records (or sectors) in
the currently attached dataset. If there is no dataset attached, the value
of *zrecs* is meaningless.

See also the documentation for -ddt a i n- and -at i ach-.

4-34

®

zrestart

The reserved word *zre5t art * is used to indicate the status of
restarted lessons. When a lesson is restarted, *zre5t art * is given a
value of -2 until the lesson continues to the next main unit; at that point,
*zrest art * is set to -1. By checking these values, you can tell if the
student arrived in the currently executing unit through a restart.

Possible values for *zrest art * are as follows:

-2

-1

0

1

2

3

4

5

Lesson was restarted; cuITently in restarted main
unit

Lesson was restarted

No restart fne or restarts disabled

Res.tart file is wrong version

Lesson modified since last session

Error restoring alternate charset

Error restoring active dataset

Error restoring global variables

See also the documentation for -rest art -.

4-35

zretun

The reserved word *zret urn* is a general purpose status indicator.
Some commands set *zret urn* to indicate the success, failure, or result
of the commands. When a command sets *zret urTi*, the possible
values are given in the individual description of the command.

4-36

®

®

zrouten

The reserved word *zrout en* caLn be used when writing your own
Micro PLATO router to find the exit condition that brought the student
back to the router.

The possible values of *zrout en* are:

Initial entry to router. The disk has been
loaded and the router is being executed
from scratch.

- j umpout - to router.
A -jumpout <router name>-returns
the user to the router. The name must be
specified.

End-of-lesson return to the router. This
occurs when the last command of the
lesson is executed and control is returned
to the router. It also happens with a blank-
tag - j umpout - to return to router or a
-jumpout q-.

The SHIFT-STOP key was pressed in a
lesson. After being routed to a lesson, a
SHIFT-STOP returns the user to the router
and sets *zrouten* to 3.

An error exit from the lesson. After being
routed to a lesson, from the router, an error
(like an execution error or a disk error)
returns control to the router and sets
zrout en to 4.

SHIFT-STOP was pressed while in the router.

If the lesson being executed is 7!of the router, the value in *zrou+ ern* is
undefined.

4-37

zscore

The reserved word *z5core* contains the last score that was recorded
with the -score-command.

4-38

zscreen

The reserved word *zscr€en* contains the current logical screen
number. It is a value between 1 and the number of logical screens
defined in the -Screen setup-command. This reserved word is set
when the -Screen select -comlnand is used.

If no logical screens have been set up, the value of *zscreen* is set to 1.

See also the documentation for -acreeTi-.

4-39

zscnecs

The reserved word *zscrrecs* is set by the -screen save-,
-screen savereg ion-, -screen rest ore-,
-Screen rest orereg i on-, and -screen moveregion-commands.
When a -screen save-or -Screen saveregion-Command is
executed, the value of *zscrrec§* becomes the number of dataset
records needed to save the display. When a -screen rest ore-,
-screen rest orereg ion-, or -screen moveregi on-command is
executed, *zscrrecs* is set to the number of records read from the
dataset when the screen image was restored.

If no -screen- command has been executed, the value of *zscrrec5*
is undefined.

4-40

zspell

The reserved word *zspel I * is used in answer judging to analyze the
student's response. When a -specs okapel I -command is executed
at an arrow, spelling errors will be accepted as correct answers. Then, if
the student's response matches the tag of an -ansuer- command,
*zspe I I * will be set to -1 if there are no spelling errors in the response
or to 0 if there is at least one spelling error.

See also the documentation for -arrow-, -ansuer-, and -apec5-.

4-41

ztouchstatus

The reserved word *zt ouchst at us* tells whether a student is
currently touching the touch panel. It is the touch-panel equivalent of
zbut i ons for the mouse. Reserved word *zt ollch5t at us* is set to
0 when the touch panel is not being touched and to 1 when it is being
touched.

You might use code similar to the following to use the touch panel:

enab I e i ouch
*
loop
. Pause

loop

end I oap
end1oop

keys=touch
(ztouchstatus ± H)

do Something with touch
coord i nat e5

4-42

z(ouchx and ztouchy

The *zt ouchx* and *zt ouchy* reserved words contain the current
location (x,y) returned from the touch panel, just as *zpt rx* and
zptry do for the mouse. When a student touches the screen,
zt ouchx and *zt ouchy* return x and y coordinates, respectively,
that indicate the point on the screen touched.

If the touched coordinate does not appear to be where you touched the
screen, your touch panel may need to be calibrated to angn it with the
display.

4-43

zttype

The *zt i)+pe* reserved word gives the machine type. The values of the
upper four bits are not set for the IBM-PC and its compatibles.

The top bit is always zero.

The bottom four bits indicate the terminal type. The values are:

0

1

2-4

5

6-11

12

13

14

15

PLATO IV terminal

unused

IST-I terrfunal

IST-II or Ill terminal

unused

ASCII machine (IBM PC, IST-Ill, Viking, etc.)

T.V. ternrinal

unused

IST-II or Ill terminal

Therefore, *zt type* = 12 is the only relevant value in the MPAS
envirorment.

4-44

ztstype

The *zt5type* reserved word gives the machine subtype. The values
for it are as follows.

If *zt i ype* = 5 or 15, the value of *zt st yp€* will be:

0 IST II
1 IST III

If *zt + ype* = 12, then the value of *zt 5t ype* will be:

0 IST II
1 IST III
2 CDC 721
3 IST I
4 IBM-PC
5 Zenith z-100
6 Apple Il
7 scroning terminal
8 Dataspeed 40
9 ANSI X3.64
11 CDC 750
12 Tektronix 401x
15 CDC 722-30
16 personal computer

Note that the value of *zt 5t ype* makes sense only if the value of
zt i ype has been checked and shows a value of 5,12, or 15.

In general, it is best to avoid writing code that depends on the machine
subtype.

4-45

®

zwcount

The reserved word *zwcount * is used in answer judging. It contaLins
the number of words in the student's response. The maximum number
of words acceptable is 50.

The word *zwcount * is set only if an -answer-, -answerc-,
-wrong-, or -wrongc- is processed.

In the following example, *zwcount * will always be set to 0:

arroi^i 51fl;buf (I) , 3H
TIO

=,Ti t31.il = wcount
endarrow

A blank -an5uer- command inserted before the -no-will cause
*zwcount * to bi` sc`t correctly. For example:

arrow 5";buf(1) ,3Jr
ansuer
no

=,Ti a.w z wcount
endarrow

4-46

®

®

®

®

®

zwherex and *zwherey*

The reserved words *zwherex* and *zwherey* give the current screen
location so that it can be used by a lesson. The word *zwherex* gives
the current x location, and *zwhei-ey* gives the current y location.
They can be set explicitly by the -at - and associated commands or
implicitly by commands such as -draw- and -wr i i e-, whenever
plotting occurs.

The location *zwherex* = Jr, *zwherey* = fl is atthe lowerleft hand
corner of the screen; and *zwherex* increases to 511 at the right hand
side of the screen, while *zwherey* increases to 511 at the top of the
screen.

Note that the *zwherex* and *zujherey* variables should not be used
I.#side a -draw- statement. To use those values, first save them in
defined variables:

calc tempi ¢ zwherex
calc temp2 ¢ zu.here}/
draw tempi+4,temp2;tempi+14,temp2+12

When storing *zwherex* and *zwherey*,16-bit variables must be
used.

After a -wr i i e- command, these reserved words contain the character
position immediately after the last character written. After a -draw-,
they contain the location of the last point drawn. After an -arrow-,
zwherex and *zwherey* are set to three lines below the arrow.

See also the documentation for -at -.

4-47

zxpixels and *zypixels*

The reserved words *zxp i xe I s* and *zyp i xe I s* store screen
resolution in terms of the number of pixels available. The word
zxp i xe I s gives the number of pixels in the horizontal direction and
zyp i xe 15, the number in the vertical direction. The default value for
both words is 512; this default is changed by using the -p i xe 15-
corrmand.

4-48

®

®

®

Chapter 5

#s¥e°mpE5ffa°e!aFnunqucagoens

System Defined Functions
Mathematical Functions
System Functions

zbdata
zk
zlen8th
zvloc

®

Svstem Defined Functions

NIcro PLATO provides a number of built-in functions. These functions
perforln arithmetic, as well as logical functions. There are also functions
that return infom`ation about the system.

Mathematical Functions

The mathematical functions are described below. All trigonometric
functions take their arguments in radians, but the degree sign operator
(a) can be easily used to convert to radians. For example, a i n (x°) .
(The ® is produced by pressing ACCESS®, where ACCESS is the SHIFT--
key.)

The Micro PLATO mathematical functions are:

abs

alog

arctan

Comp

® *c05*

Returns the absolute value of the argument.

Returns the antilog base 10 of its argument, a
floating point number.

Returns the arc tangent of its argument, a
floating point number in radians.

Returns the one's complement of the
argument, which is an integer. The result is
also an integer. The one's complement of a
number is a bit-by-bit inversion of the number.
For example, the one's complement of olol is
o7676 (16-bit integers are always used).

Returns the cosine of the argument, a floating
point number.

5-1

Miero PLATO Author Language Reference Manual

exp

* frac*

* i nt *

ln

* I og*

s1n

Returns the exponential of the argument. The
function call exp (x) is equivalent to ex. The
result is a floating point number.

Returns the fractional portion of the argument,
which is a floating point number. The result is
a floating point number.
(e.g., frac (1. 23) = 0.23).

Returns the integer part of a floating point
number. (e.g., int (1.34) = 1) .

Returns the natural log of the argument (the
log base e). The result is a floating point
number.

Returns the log base 10 of the argument. The
result is a floating point number.

Returns the sine of the argument. The result is
a floating point number.

System Functions

The system functions are described on the following pages. These
functions are used to check information about the system.

5-2

®

-zbdata.

After a -bu f fer Set up- command has been executed, the *zbclat a*
function can be used to find out how many bytes have been
received from a particular port. This function is analogous to the
zdat a reserved word:

calc Tibytes ¢ zbdata (portnun)

Valid values for port num are:

central system -t<m i i - data

serial port data

Note that the *zbdat a* function returns the actual number of received
data bytes; it does not include the eight system bytes. The *zbdat a*
function returns a value of 0 if the port number is inegal.

Refer to the description of the -bu f fer-command for more
information.

5-3

-zk-

The function *zk {someke}+) * returns the input code for the specified
key. It should be used when you are comparing the reserved word
zkey to key values.

All alphanumeric keys can be referenced directly:

zk(a) , zk(Q) , zk(9) , zk(<) , zk(%)

Function keys (and other keys that would be messy) can be referenced
by name. The argument for *zk* must be an actual key or keyname; it
cannot be a defined variable.

It is much more convenient to use the *zk* function than to use the
numerical values for the zkeys:

Pause
branch zkey=zk(%) ,",x SS branch to " if
* SS % was pressed

The fouowing names are recognized by *zk* :

ans copy I
ass i gn cr
assignl dad a
back dad a 1
backl edi i
bksp edit 1
copy erase

For example:

5-4

erase 1 next
font next l
he I p space
lie 1 p I square
I ab Square 1
labl stop
mi cro stop i

pause keys=all
i f zkey=zk (backl)

write You pressed "SHIF-T-BFICK".
elsei f zkey=zk(assign)

unite You pressed the "¢".
end i f

sub
sub1
Sup
supl
tab
term
i i meup

®

-zlength-

The *z I engt li* function returns the number of elements in the specified
array.

If the specified array is an unresolved adaptable array, a -1 is returned.

unit example
i,8: x(128),y(*)
i,16: length

*
calc length ¢ zleTigtli (x)

length a zlength{y)
do set len (;y)
calc lengtTi ¢ zlengtTi (y)
*
unit set len

i,16: buffer(25)
return buf fer

SS length= 128
SS length= -1

SS leTigtli= 25

®

®

If the number of elements in an array is greater than 127, the variable to
receive its z I engt h must be either 16-bit or floating point.

See also the descriptions for the ~do- aLnd -uri i i - commands, and the
Micro PLATO I.anguage Argument Passing section.

5-5

-zvloc-

The function *zv I oc* gives the absolute memory location in RAM of
the variable to which the function is applied. In the example below, x
contains the absolute RAM address of y.

define x,y
calc x ¢ zvloc(y)

For example, suppose a Micro PLATO lesson had the fouowing defines
and test unit:

define buf (3ff)
i , 8 : second (5) =bu f (1 JJ)

*
unit i e5t
at 1 lJF
write zvloc buf(ll) = {s,zvloc(buf(ll)))

zvloc second(3) = <s,zvloc(second(3))}

The -de f i lie- command specifies that the first element of the 8-bit
array seconcl is equivalent to the left-most eight bits of bu f (I H) .
Therefore, the left-most eight bits of bu f (1 I) are equivalent to the eight
bits in second (3) . So, the value of *zv lce* for buf (11) would be the
same as the value of *zv loc* for Second (3) . For example, the
-wr i i e- above could show 18534 for the address of both variables.

5-6

Chapter 6

o Xri=ompeLn?5gsst::guage

Introduction
Input Arguments
Output Arguments
Omitted Arguments
Expressions and Variables as Arguments
Value Type Conversion
Restrictions
Argument Evaluation Order
Evaluation and Assignment of Arguments
Argument Passing Syntax

Passing Copies of Arrays
Returning Copies of Arguments
Passing by Address
Adaptable Arrays

®

®
Introduction

Lessons are divided into a nuinber of units, each of which typically
performs some individual function. Often the units take some data as
input, perfom` their function, and produce some data as output. For
such units, it is very useful to have a way of dearly indicating what is
input to the unit and what is output from the unit.

Units that use only local variables and communicate with other units
according to the rules of structured coding are usually easier to maintain
and are easier to transport to subroutine nbraries or other lessors than
units that use global variables to communicate with other units. Lessors
containing such units are also easier to debug because the data on which
each unit depends are explicitly passed to it and because the only effect
each unit has on the rest of the lesson is to produce specific data as
Output.

Micro PLATO argument passing provides a method of explicitly
specifying the input and output data for units.

Input Arauments

Input arguments to a unit are specified in the command that invokes the
unit. For example:

do square (256 , 3#Jr, "H)
*
unit Square (x, y, side)

x,y,side SS variables to receive
data
*

Draw a square wit:h Sides Qf length side
with center at screen location x,y.

6-1

Miao PLATO Author Language Reference Manual

*
box x-5 i de+2 , y-a i de+2 ; x+5 i de+2 , y+5 i de+2

The data to be input to unit square is specified in parentheses after the
unit name in the -do-. This data consists of a list of flrgw7He7ifs,
separated by commas. After the unit name in the -iLn i i - command is a
corresponding list of variables, also separated by commas and enclosed
in parentheses. When the -do- is executed, the value 256 is stored in
variable x, 300 in y, and 100 in Side. Unit square then can read the
input data frcrm these variables. In this example, local variables were
used to receive the arguments. (Global variables also can be used
without referring to any other type of variable.)

Input arguments can be passed this way with the -do-, -j ump-,
-j umpn-, and -goto-commands.

Output Arguments

Output data can be passed from an attached unit when it returns to the
unit that called it. For example:

unit main

do
*
unit

*
*

sum , d i f f
5umd i f f (I 5 , 2H ; Sum , d i f f)

surd i f f (a , b)
a,b

Compute the sum & difference of 2 numbers.
*
return a+b,a-b

The arguments 15 and 20 are input to unit sumd i f f by unit rna i Ti. In
addition to these two input arguments, the -do- contains two output

6-2

Argument Passing

arguments, sum and d i f f , that will receive the results to be returned by
unit surd i f f. h the -do-, the input arguments are separated from the
output arguments by a semicolon. When unit surd i f f executes the
-ref iirTi-, the values 15 and 20 are read from the variables a and b,
they are added together, and the result is stored in variable sum of unit
rna in. Likewise, the difference is stored in d i f f. The -return-also
causes control of the lesson to return to unit rna i Ti.

Up to ten arguments can be passed to a unit, and up to ten arguments
can be returned from a unit. The system variable *zargs* contains the
number of arguments passed.

_Q_mittedArguments

Arguments can be omitted from the list of arguments being passed to or
from a unit.

unit

do
uJr i i e
*
unit

*
*
*
ca1c
dote
ca1c

For example:

main
f , 48 : ays
average (7 , 1 . 6 , 3 , 5 , 3 a ; avg)
The average is {s,avg}

average (a (I) , a (2) , a (3) , a (4) , a (5) , a (6) , a (7))
f . 4a : a (7)
i , 1 6 : argTium , ~

Compute the average of up to 7 numbers.

sum ¢ jJ
JFavg,argnum 4= 1,zarg5
Sum a sum + a(argnum)

flav8
return sum/zarg5

6-3

Micro PLATO Author Language Reference Manual

After the arguments have been passed to unit average, the values of
a (6) and a (7) are undefined. If these variables were global instead of
local, they would retain whatever values they contained before the -do-
was executed. Arguments can be omitted from within the argument list.
Use commas to indicate which positions in the argument list are empty.

do
I ocat i on
do
*

unit

if

circlet"1JF„ 2H) SS coarse grid

circle(256,256,"JF) SS fine grid location

c i r¢ I e (I oc i , I oc2 , rad i us)
i , 16 : I oc i , I oc2 , rad i us
zaT¥= = 3
at locl , loc2

elseif zarg5 = 2
I ocat i on

at I ocl
else

SS fine grid location

SS course grid

write argument error
end i f
circle radius

For the first -do-,1 oc 1 is set to 1010 and rad i us is set to 20. The value
of loc2 is undefined. The value of *zargs* is 2. For the second
example, all three receiving variables are set and *zarg5* is 3.

If arguments are passed to a unit that has no arguments, an execution
error win occur.

EXDressions and Variables as Arauments

Any type of expression can be passed as an argument® The -un i i - or
attaching command must specify a variable into which to store the
value.

6-4

®

drgunent Passing

do a(1+2,n5**2*5iii(3Jr°)) SS any expression ok
*
unit a(tar,nl,vl) Ss must be variables

i I I 6 : var
*
unit b(l,2) es illegal, ergs must be variables
do c(I;2,3) SS args 2 and 3 illegal

Value TVDe Conversion

The value of an expression passed as an argument is converted to the
type of the receiving variable. For example:

de stuff(12.6,4.1)
unit stuff {nl ,n2)
shoi^i varl SS shoi^is 13
shoi^i var2 SS shows 4

An easy way to remember how this works is to think of the argument
passing as a series of -ca I c- commands. For the above example, this
would be:

calc nl € 12.6 SS 12.6 roundecl +a 13
calc n2 a 4.I S$ 4.I rounded to 4
do 5tuf f

Conversions are done the same way for the -ret urTi-.

6-5

Micro PLATO Author Language Reference Manual

Restrictions

Arguments are not allowed on function key branching commands, such
as -next -, -back-, or -hel p-.

Both input and output arguments are allowed in conditional branching
corrmands. For example:

unit main
i , 16 : cond ,-var (5)

calc cQnd ¢ "
clo cord,x,quack {l , 2;var(1)) ,x,woof {4;var (2) I

Arguments are not allowed when branching to the pseudounits x and q.
For example:

goto q(1) Ss illegal

Variables used to receive arguments input to a unit must be defined in
such a way that they can be used in the unit. Variables local to the unit
can be used. Globally defined variables can be used if the unit has no
local variables or if it merges a global define set with its local variables.

Arguments do not work with iterative -do-.

Argument Evaluation Order

Arguments are evaluated left to right. In most cases, the order does not
matter. If the argument list contains embedded assignments, the order
is significant. For example:

un i i quack
i ,16:x

6-6

Argument Passing

calc x ¢ I
do woof (x¢x+ 1, x¢x+ i)
*
unit woof (y,z)

i ,16:y,z
show y
chow a

SS chous
SS shous

In general, it is poor programming practice to use confusing constructs
such as this.

Evaluation and Assianment of Arauments

All arguments are evaluated before being stored into the receiving
variaLbles. This does not matter in most cases, but here is an example of
a case where it makes a difference:

define i,16:a,b
unit main
do quack (a , b)
unit quack fo, a)

The values of a and b are exchanged. The value of a is not stored in
both. Note that there would be no question about how this would work
if the variables were local instead of global. The ambiguity arises only
when one of the receiving variables is also in one of the argument
expressions.

6-7

Micro PLATO Author Language Reference Manual

Argument Passing Syntax

do example (------- ; ------- ; -------)
*
unit example(------- ; ------- ; -------)

The Micro PLATO argument passing list consists of three fields. Each
field permits up to ten arguments. Arguments are separated by a
comma. Both scalar variables and arrays can be used as arguments in
any of the fields. An array is considered as one argument.

The first field passes copies of the arguments. This feature is supported
in the -do-, -j LLmp-, -j umpn-, and -got a-commands.

The second field returns copies of the arguments to the calling unit.
Arguments in this field of the -un i i - command specify the default
return arguments. Copies of arguments can also be returned via the
-ret urn-command.

The third field passes addresses of the arguments. The receiving
-un i i - arguments will point to the same memory locations as the
passed arguments. Only the -do- command can pass argument
addresses. Examples of the use of each of the fields is given in the
following sections of this chapter.

Passing Copies of Arrays

In Micro PLATO, it is possible to pass copies of the values of an array to
another unit. This is done by placing the array name in the first field of
the passing argument list. The corresponding array in the -un it -
command receives these passed values® This feature is supported in the
-do-, -j LLmp-, -j umpTi-, and -=oto-Commands.

The passing and receiving array need not be of the same variable type
because automatic type conversion occurs.

6-8

®

Argument Passing

The receiving array must either be the same length as the passed array
or be an adaptable array. Adaptable arrays are covered in a later section
of this chapter.

Up to ten arguments can have copies of their values passed to another
unit. An argument is either a scalar variable or an array.

The example below illustrates how to pass a copy of an array.

un i i pa55copy
i , a : x (12)

cedel ® .

square (x)

cedel 1,

un i i Square (y)
i ,16:y (12)
i , a : index

doto #, index¢1,12
calc y(index) ¢ y(index) **2
in

In this example, suppose x (I) through x (12) equal 1 through 12,
respectively. When the -do- is executed, all the values in array x are
copied into array y. Automatic type conversion occurs. When unit
square is executed, the elements in y are squared without affecting the
original array x.

• F}eturning copies of Arguments
When exiting a unit, there are two ways of returning copies of
arguments. One way is by using the -return-command within the

6-9

Micro PLATO Author Language Reference Manual

body of the unit. The other way is by using default return arguments
specified in the -un i i - command.

The -ret urn-command with a tag overrides the default returns.

Default return arguments are placed in the second field of the -un i i -
command. When the unit is exited, copies of these arguments are
returned to the corresponding return arguments in the -do-.

Automatic type conversion occurs if the default return arguments are of
a different variable type than the return arguments in the -de-. Both
arrays and scalars can be default return arguments. A maximum of ten
argulnents can be returned. Each argument is separated by a comma.
An array is considered as one argument.

For example:

do example (; argl , arg2)
*
unit example (;w,x)

i , 3 : w, x (5) , y, z (5)

In the above example, the scalar variable w and the array x are the
default return arguments. Copies of these arguments win be returned if
the unit is exited in one of the following four ways:

- blanktag-returii-

- -do-withaqtag

- -goto-withaqtag

- fallthroughendofunit

If return arguments are specified in a -ref urn- command, then the
default return arguments are ignored.

6-10

®

®

Argument Passing

Passing by Address

Memory is often a scarce commodity when dealing with micro-
computers. It is, therefore, not always advantageous to pass copies of
scalars or arrays, especially large arrays. Micro PLATO provides a
means of giving a called, or invoked, unit access to an argument without
requiring that a copy of the argument be passed. This is accomplished
by passing the address of the original argument rather than a copy of its
value(s).

This method of passing arguments also makes it unnecessary to return
values to the calling unit since changes made to the passed argument are
immediately reflected on the original.

The variable type of the passed and receiving argument must be the
same. If an array is passed, the lengths of the passed and receiving
arrays must be equal or the receiving array must be an adaptable array.
Adaptable arrays are covered in a later section of this chapter.

Address arguments must be storable. They cannot be constants or
system variables. They cannot be specified on either side of an
equate (=) or equivalence (a) definition.

The fonowing example illustrates how an address of an argument is
passed:

un i i pa5scopy
i , 16 : x (512)

cede, ® ®

sumarray (; ; x)

code, , .

unit sunarray (; ; y)
i , I 6 : y (51 2)
i ,16:a

doto JF,a ¢ 1,512

6-11

Micro PLATO Author Language Reference Manual

calc y(a+1) a y(a+I) + y{a)
JJ

When the -do-command is executed, y (I) through y (512} will point
to the same memory locations as x (I) through x (512) , respectively.
The changes to y will be made to x, because they are actually one and
the same array.

See the *zargsa* reserved word for information on how to find out
how many address parameters were actually passed.

Adaptable Arrays

The term adaptable array refers to an array that can adapt to the length
of the array passed to it. An adaptable array is denoted by an asterisk
(*) in the length field of the receiving array definition.

If adaptable arrays are utilized, the user can no longer expect the local
variables for the unit it is in to reside in contiguous memory locations.

An #7Ircsozz;ed ndap£4Z7je ¢rr¢y is an adaptable array that has not yet
received an array. Any references to elements of an unresolved
adaptable array will give an execution error. The *z I engt h* function
returns -1 when an unresolved adaptable array is specified.

Adaptable array elements cannot be specified on either side of an
equate (=) or equivalence (=) definition.

Only local arrays can be adaptable arrays.

6-12

®

®

Argument Passing

The fonowing example inustrates how an adaptable array works:

unit exanple
i , 8 : array (i JJ)

do edapt (array)
*
unit adapt Q}uffer)

i , 8 : bu f fer (*)

Before the -do-is executed, array buf fer is unresolved. When the
-do- is executed, bu f fer adapts to the length of art`ay and is passed a
copy of its values. Note that adaptable arrays can be resolved by
receiving a copy or an address of an array.

See the *z I engt h* function to find out how many elements are in an
adaptable array.

6-13

®

Chapter 7

• Micro PLATO Lan

®

Introduction
Using Unit Libraries
Restrictions
Examples of Unit Libraries

A Simple Library
Multiple Libraries
A Lesson Driver Stored in a Library
A Library with Private Units

e Unit Libraries

®

Introduction

Uhit Libraries provide a simple, yet powerful, means of sharing units
between lessons written in Micro PLATO. Typical uses for libraries are
described below.

• Commonly used units can be grouped in libraries in PLATO
courses for microcomputer delivery. These unit libraries can
be used by any lesson on the disk. Because a single copy of the
unit exists in a library, as opposed to separate copies of the unit
in each lesson that uses it, disk space is saved. In addition,
changes are made once, but are effective in all lessons that
reference the library units.

• Completed code can be removed from lessons under
development and put into libraries. This means the completed
code does not have to be stored or condensed with code under
development. Thus, unit libraries provide a means of dividing
lessons into separately condensed modules. This can save
condense tine.

• Libraries can contain "driver" code that makes calls to units
suppfied in the lesson being executed. Several lessons can be
set up to use the driver and supply their own versions of the
called units.

Useful subroutine units in a lesson can be made available for
use by other lessons also.

Program functions can be shared without sharing the source
code for the functions.

7-1.

Micro PLATO Author Language Reference Manual

Usina Unit Libraries

The -obt a i n- and -a f fer- comriands allow the sharing of units
between lessons written in Micro PLATO.

To set up a library of units, put the units in the same lesson and indude
-a f fer- commands for those units that are to be available to other
lessons.

To access library units from another lesson, use the -obt a i n-command
for the library units you want to use. See the fxfl77€pJes a/ U7[z.i L!:b7.ari.es
section.

Any number of libraries can exist in a PLATO course for microcomputer
delivery. A lesson can use units from more than one library, and a
library can use units from other libraries.

A library can have units that are used within the library but that are not
accessible from outside the library.

Libraries are condensed before use just like other lessons. The Micro
PLATO editor can be used to update library units in the same fashion
as nonlibrary ults.

Arguments can be passed to and from library units just like they are
passed to nonlibrary units.

Flestrictions

• Global variables are not allowed in library units.

• Data should be passed to and from library units as unit
arguments.

7-2

®

®

Unit Libraries

• A condense error is given if you use a global variable in a unit
named in an -a f fer- command.

• If you use a global variable in a unit that is reached through a
call to a library unit, but is not itself listed in an -a f fer-
command, an execution error occurs.

ExamDles of Unit Libraries

TThe fouowing examples are of a simple unit library, multiple unit
libraries, a lesson driver stored in a unit library, and a library with
private units.

A Simple Library

Lesson ~1

obtain maps;usa,britain
maps ; j apan , i i a I y

maps;russia=u55r
maps ; usa , br i i a i n

maps ; germany
maps ; ussT` , g€rmaTiy
*
unit globe

LJ5a
br i i a i n
russ i a

do germany
at 2Hl ff
write The world...

Lesson ww2

obt a i n

7-3

Micro PLATO Author Language Reference Manual

Lesson mars

of fer usa, britain
ussr, germaTiy
japan, italy

*
un it usa
draui l99,41H; 162,41
un i i ussr
unit britain
un i i g-Tly
unit italy
un i+ j apan

In this example, lessons wwl and ww2 obtain some units from library
maps. In lesson maps, the -of fer-command is used to make the units
available to other lessons. In lessons wwl and ww2, the -obt a i Ti-
command is used to get the units from lesson maps.

Lessons wwl and ww2 can use the -obt a i n-ed units as if the units were
actually located in the lessons. For example, when wwl executes the
-do germany-, the unit is found in lesson maps and executed® After
unit germany is executed, control returns to unit g I abe.

Lesson wwl uses the "local unit name" feature so it can use the unit name
russ i a instead of u55r to reference the unit from file map s .

Multiple Libraries

The fonowing example demonstrates several capabilities of unit
libraries. First, it shows how a lesson can use units from several
libraries and how a library can use units from another library. It also
shows how arguments can be used to pass data to, and return results
from, library units. One of the lessons in the example serves both as an
instructional lesson and as a supplier of units accessible to other lessons.

7-4

®

Unit Libraries

Finally, the example shows how library units can be used with help
corrmands.

Lesson mathlib

offer factorl , prime
*
unit factorl (n)

i ,16:n, i
f, 48: f

calc f a 1
loop n > i

calc f¢f*n
. n€n-I
end 1 oap
return f
*
unit prime (n)

i nt eger : n
* code, , ,

Lesson problib

obtain matlilib; factorl
of fer periTut e, comb ine
*
un i i: permute (n, r)

i , i 6 : n , r , n fact , nr fact
do factorl (n; nfact)
do facforl (n-r; nrfact)
returi'i nfact/nrfact
*
unit cornbirie (n, r)

i I 16:n,r
* code, I.

7-5

Micro PLATO Author Language Reference Manual

Lesson mathl ib is a library of generally useful mathematics functions.
Each unit perfom`s one function. Function arguments are passed to the
units as arguments and results are passed back with the -ref urn-
command. Note that the unit arguments are not included in the
-a f fer- command.

The two units shown here compute the factorial of a number and
determine if a number is prime.

LLesson probl ib is a library of routines used by a series of lessons that
teach probability. This library uses unit factor I in lesson mathlib,
another library.

Lesson probint

obtain problib; permute, combirie
mathlib; factorl

*
unit saple

i Tit eger : N , F! , N f , NR f , P
raTidu N, I Jr
ranch R, N
do facforl ou; Nf)
do fact orl on-FE; NFI f)
do permute IN , Fa; P)
i^irite If N = <s,N} and R = {§,R} then

N! = <s,Nf} and Ow-R) ! = {s,NF3f}
and P = <5,P}

Lesson probint is an introductory probability lesson. It uses units
from both prob i ib and mat hl ib.

A lesson, such as probint, that is executed as a lesson, as opposed to
being a library of units not intended to be executed on its own, can also
provide units that can be used by other lessons.

Suppose an -a f fir-command is added to probint so unit sanp I e is
accessible to other lessons:

7-6

®

Unit Libraries

Lesson Drobauiz

obtain probint;sample
*
un it quest ion
unite Press HLP for a permutation e?<ample.
help saple

Lesson probqui z uses unit samp I e in probint for review help. This
illustrates how -obt a i n-ed units can be used with help commands.

Note that lesson probqui z does not need -obt a i n-commands to get
the units in prob I i b and mat hl i b used by probint. The system
automatically gets -obt a i Ti- units for libraries.

® A Lesson Driver stored in a Library
Lesson auizl

obtain driver;main
dr i vcr ; rna i n
offer title
of fer credi i a
*

un it st art
j ump main
*

unit title
unite qulz l
unit credits

®

Lesson auiz2

cht a i n

offer title
a f fer credit a
*
un i i start
j ump main
*
unit title
unite quiz 2
unit credits

7-7

Micro PLATO Author Language Reference Manual

Lesson driver

obtain ;title,credits
of fer main
*
unit main
do title
do credits

Lesson dr ive r contains code that controls the flow of execution for
several lessons. The lessons are similar in structure, but each has its
own unique displays. These displays are in lessons qui z 1 and qui z 2.

Lesson quiz 1 is executed when the router lesson does a -j unpout -to
it. The lesson turns control of lesson execution over to driver by
jumping to unit rna i n.

Uhit rna i n uses -do-to display the title page and credits for qui z 1.

Lesson qui z 2 uses dr i ver in the same way as qu i z 1. The control of
each lesson is given to unit rna i n, and each lesson provides its own unit
i i i I e and cred i i a.

Units i i i I e and cred i i 5 are obtained from the proper quiz lesson
because the lesson name in the -obt a i ri-command in lesson driver is
omitted. The units are obtained from whichever quiz lesson jumped to
unit main.

A Library with Private Units

The following example illustrates how a library can have units that are
not available to other lessons. Any unit not histed in an -a f fer-
command is such a z7rz.I)ate unit.

7-8

®

®

Lesson gcol01

chtain help;keys
*
un it iTlt ro
he I p keys
arel , ,
write This lesson...
de pause
*
un i i pause
for , , I
write Press NEXT to ...

HELP f or . . .

Unit Libraries

Lesson help

o f fer kqu
*
un i i keys
l^lr ite Tliese ke}/a

do panse
*
un i i panse
i^Ir ite Press NEXT

EflcK to , , .

Each lesson in the above example contains its own unit named pause.
Because neither unit is named in an -a f fer- command, each is said. to
be pr!.t)afe to the file in which it is located. All references to unit pau5€ in
file geo 101 are to the unit pause in that lesson. Likewise, all references
to unit pause in lesson he lp are to its unit pause.

When lesson geol 01 is executed, its unit pause is called from unit
intro.

If the student presses HELP, unit keys is executed. It calls unit pause in
lesson he lp.

7-9

®

®

®

Chapter 8

gL¥a?EiLA±:iL£:#/a&tDut„,I

I.ntroduction
Definitions and Terms
RS232 Connections and Cables
Serial Channel Programming
lntermpt Control
Checklist for Problems
Examples

®

®

Introduction

The serial ports are used to communicate with peripheral devices.
Micro PLATO provides commands that auow great control over the
communications. With these commands, devices such as videodisk
players, printers, tape players, and so forth, can be operated.

Definitions and Terms

The following are some terms used in this section:

I/O channel refers to the route of data into or out of the
computer. The serial I/0 channel sends and
receives data through the serial I/0
connector on the back of the computer.

Device address

RS232

refers to the number used to address a device
in a lesson. The serial channel uses
device address 02 for sending and receiving
data and 03 for control and status.

refers to a communications standard. It
specifies standard signals between data
terminal equipment and data communications
equipment.

RS232 Connections and Cables

The RS232 standard (EIA standard RS-232-C) allows data to be
transmitted between devices. The following description of RS232

8-1

Micro PLATO Author Language Reference Manual

involves the connections that must be made. The voltage and current
levels required are standard in all devices and are not covered here.

There are two classes of equipment defined by the RS232 standard.
They ape data terminal equipment (DrTE) ar\d data communications
apw!.pme7!f (DCE). The first class (DTE) includes printers, most terminals,
videodisks, videotapes, and many computers. The second class (DCE)
indudes modems. RS232 defines the connection between equipment of
these two classes.

You must use a cable to connect two RS232 devices. Cables should be
no longer than 50 feet, but preferably less than 15 feet, for best results.

The exact cable connection needed for a particular device cannot be
specified in advance, as each device has different requirements. Many
devices also define functions in addition to the RS232 functions, and
these must be handled on an individual basis. For details on cable
requirements, check the manual for the device being interfaced.

In general, a straight RS232 cable is required to connect a DCE port to a
DTE port or vice-versa. If connecting DCE to DCE or DTE to DTE, a
"reverse" or "null modem" RS232 cable is required.

A 7IWJZ "odem cable is one that has pins 2 and 3, 4 and 5, and 6,8 and 20
connected to each other. Pins 1 and 7 go straight through as shown
below:

1 <-> 1
2 <-> 3
3 <-> 2
4 <-> 5
5 <-> 4
6,8 <-> 20
20 <-> 6,8
7 <-> 7

The connectors used are 25-pin, subminiature D type. Some devices use
different connectors. Consult the manuals for these devices for pin
configurations.

8-2

Serial Channel Input/Output

The basic signals of the RS232 standard are nsted below:

function

1 pro tective
ground

2 trausndtted
data ITD)

3 received -
data

4 request to
send (RTS)

5 clear to
send (CTS)

6 data set
ready (DSR)

7 co-on
ground

8 d ata
carrier
detect (DCD)

20 data
terminal
ready (DTR)

®

8-3

Protective "chassis ground". Required
if AC plus has no ground prong .

Transmits data from the DTE to the DCE.

Transmits data from the DCE to the DTE.

General purpose output. Uses vary
widely.

General purpose input. Uses vary
widely.

General purpose input to signal the DTE
that the DCE has been powered up and is
ready to go.

Reference point for all interface
voltages. MANDATORY.

Its uses vary, but on a DTE, it's
frequently used to disable data
reception.

General purpose output to signal the DCE
that the DTE has been powered up and is
ready to go.

Micro PLATO Author Language Reference Manual

Serial Channel Programming

Note that when you use the serial channels, you must make sure that
you have the configuration parameters set correctly for your hardware
setup. Please refer to the Scffz.7Ig ap Yokr Co7I¢.gwrflfz'o7c section of the
user's guide for information on serial port configuration.

The serial channel is accessed from Micro PLATO device addresses 02
and 03. Device address 02 is the data port, and device address 03 the
control port. The -x in-and -xout -commands should be used for
input and output, respectively (see -x i n-for more information.)

To send or receive data from the serial channel, the channel must first be
initialized. The initialization word is sent to device address 03.

Fonowing initialization, data can be sent or received by the -x i Ti- and
-xout - commands. Sending data out can be done by sending data to
device address 02 using the -xout - command. If much data is sent at
one time, the -xout - command makes sure that each byte has been
transmitted before sending the next byte. The command does not
perfomi any flow control (for example, check that d¢£a scf rcczdy (DSR) is
set).

Alternately, the character request flag of the serial channel status word
can be checked® The status word is read from device address 03 using
an -xi n-command. The format of the status word is described in a
succeeding section.

Data input with the Micro PLATO Language can be done by a loop that
checks the character ready flag of the serial channel and, if set, then
reads the received word. The data word then can be read from device
address 02 using the -x i n- command.

To initialize the serial port, address the control bytes to address 03.
Only the lower eight bits of the control bytes will be used. The upper
four bits of those eight are the command or the attribute that you wish
to set, and the lower four bits specify the value for that command. X
equals a "don't care" bit, one whose value does not matter.

8-4

®

Serial Channel Input/Output

8-5

INTEREUFT MASK: 0 0 0 0 1 1 Ii Io

Io = enable character request interrupt
Ii = enable character ready intermpt

BAUD RATE: 0 0 0 1 b3 b2 bl bo

b3,b2,bl,bo =0000 75
= 0001
i oolo
= 0011
= 0100
= 0101
= 0110
= 0111
= 1000
= 1001
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111

SELECT WORD LENGTH: 0 0 1 0 X S Li Lo

S = 0 1 stop bit
= 1 2 stop bits

Li, Lo = 00 5 data bits
= 01 6 data bits
= 10 7 data bits
= 11 8 data bits

Micro PI.ATO Author Language Reference Manual

SELECT PARITY: 0 0 1 1 X X Pi Po

Pi,Po =X0 disableparity
= 01 parity odd
= 11 parity even

MODEM CONTROL Q±[: 0 1 0 0 X 8 R D

MODEM CONTROL OFF: 0 1 0 1 X 8 R D

= break
= request to send constant (RTS)
= data terminal ready constant (DTR)

Note that not all data rates are supported by all machines. The rates
supported on the IBM PC and CDC PPTS machines are: 110,150, 300,
600, 1200, 2400, 4800 and 9600. Setting to baud rates other than these
will not cause any detectable error condition (for instance, *zret urti*
will not be set), but the port will not be initialized correctly.

The character request interrupt is not active on the IBM PC and the CDC
PIITS.

Input Status Word

The input status word contains information about the`state of the serial
channel transmitter and receiver. It can be used to check whether data is
ready to be sent or received.

The meaning of each bit in the input status word is given below. In
normal operation, only the character request and character ready are of
interest. The other bits can be ignored.

8-6

®

Serial Channel Input/Output

8-7

STATUS WORD: 17 16 15 LI 13 12 11 10

= Receive data ready
= Break received
= Transmit data request
= Receive data error
= Clear to send
= Data Set Ready
= RIng indicator
= Carrier detect

lnterruDt Control

To enable serial channel interrupts on all computers, the following
control byte is set in an -xout - commaLnd and address device 03:

INTERRUPT MASK: 0 0 0 0 1 1 Ii 1o

= 1 - enable character request, (transmit)
= 0 - disable character request

= 1 - enable character ready, (receive)
= 0 - disable character ready

For serial port interrupts to work with the -bu f fer- and -i nt rupt -
commands you must always execute an -emab I e ext - command as
well as enabling interrupts in the serial port.

Micro PLATO Author Language Reference Manual

Using Multiple Serial Channels

The fonowing chart lists the various extemal addresses for Micro
PLATO:

External Device
Addresses

0

01

02

03

04

not used

set interrupt mask

serial channel data I/0

serial channel status /control

set serial channel device address

External address 04 contains the address of the serial port that is used
whenever the external addresses 02 and/or 03 are referenced.

To find out the currently selected serial port, the following code can be
used:

un i i get port
i , 8 : curport

xin 4,curport , I
return curport

The serial ports are numbered from 0 to the number of serial ports
available in the machine minus one. For information on how to indicate
which Micro PLATO serial port maps to the physical ports in the
system, see the Sc#!.7tg LJp Yo#r Co7!fi.g#rHffo7] section in the user's guide.

8-8

Serial Charmel Input/Output

Checklist for Problems

If problems occur when trying to connect a device to the computer, the
following actions are suggested:

• Check the I/O board to be sure that it is connected properly
and that the switch settings are correct. If you have doubts,
call a hardware field engineer.

• Check the cable connecting the computer to the device. Be sure
that all cable connections are correct. Check the manual for the
device being interfaced.

• Be sure that baud rate, parity, and data word length are set
correctly. If a printer is printing garbage or the computer is
getting numerous receive errors, the cause is likely to be an
incorrect setting of baud rate, parity, or data word length.

Some devices can cause interfacing problems due to the way the device
works. Care should be taken when sending out to high speed devices
that have internal buffers, as it is possible to overflow those buffers.
Likewise, the computer cannot accept continuous high speed input and
perfom` other tasks at the same time without careful programming.

Examples

Example: Initializing serial channel from Micro PLATO

unit initport
*
* Initialize the serial port.
*
* enable character reacl}+, 12#jr baud, 7 data bits, 1
* Stop bit, even parity, DTF! ancl RTS = ori,
* E}reak = of f

8-9

Micro PLATO Author Language Reference Manual

*
i , a : iTlit (5)

*
enable ext
*
calc init(i) ¢ oJJ16

init (2) a oJFT26
init (3) ¢ o"42
init (4} ¢ oJr63
init (5) ¢ olfl3

*

xout 3,init (1) ,5

SS initialization buffer

SS enable external inputs

SS enable char. ready
SS 12JJ# baud
S$ 7 data bits
SS even parity
SS modem control 0N

SS send bytes to line 3

Example: Sending data out the serial channel

unit send
*

merge , g I oba I :
i , 8 : chars (1 #JF) , numchar

*
* insert code here to load the array chars with
* characters to be sent, and numchar with tlle
* number of characters
pack chars (I) , numchar, abedefglii j klmnopqrstuvwxyz
*
do initport SS initialize serial channel
* SS (see above)
xout 2,chars(1) ,numcllar SS send the characters

Example: Receiving data from the serial channel

un it recei ve
*

merge , g I oba I :
i , 8 : chars (1 H) , numchar , st at u5

i n i i port SS initialize serial channel
SS (see above)

®

®

Serial Channel Input/Output

* Loop, reading cliaracteTi from the serial cliannel
*
calc i'iumchar ¢ fl
loop numchar ± 1H SS collect up to " chars

pause H,keys=all Ss allow keyset activity
xin 3,status,1 SS get status

reloop (status Smask$ 1) = # SS loop until char ready
*

calc numchar ¢ numchar+ I
xin 2,chars(numcllar) , i SS get the char

end1oop

Refer also to the documentation for the bu f f er- command for
additional examples of receiving data from the serial channel.

8-11

®

Chapter 9

• Videodisc Libr

®

Overview
Getting Started

Obtaining the Units
Defines Needed

Library Contents
Library Control Units

vinit
vfinish

Videodisc Control Units
vaudio
v8etaud
vdir
v8etdir
Vnun
vgetnun
vspeed
v8etspd
vdisp
v8etdisp

Videodisc Command Units
vsetfrm
v8etfrm
vplay
vplayw
vstart
vstop
vwait

Overview

The Micro PLATO Videodisc Library package allows authors to create
and deliver Miao PLATO lessons that utilize images from a videodisc
player.

To drive your videodisc, you will need a memory resident replacement
module (MRRM) for your particular videodisc. Contact your sales
representative for more information on obtaining this software.

TThe lesson videol ib . i s n contains a "programmer's reference" section
to assist Miao PLATO programmers in using the Micro PLATO
Videodisc Library.

TThis lesson also indudes a set of "test" routines that can be used to
exercise a videodisc player.

Gettin Started

To use the videodisc, you must first have loaded the memory resident
driver for your particular videodisc player. Once this MRRM is loaded
into memory, Micro PLATO lessons can communicate with the
videodisc via the videodisc library units.

To use the videodisc library units in your Micro PLATO lesson, you
must -obt a i n- the units from the library and you should also define
some constants.

9-1

Micro PLATO Author Language Reference Manual

Obtaining the Units

The Micro PLATO Videodisc Library contains units that control a
videodisc player. These units must be -obt a i n-ed from the library.
The fouowing -obt a i n- statements should be placed at the beginning
of your Micro PLATO lesson:

obtain videolib;vinit,vfinish
v i deo I i b ; vaud i a , vget aud
v i deo I i b ; vd i r , vget d i r
v i deo 1 i b ; vTium , vget nun
v i deo I i b ; vspeed , vget spd
v i deo I i b ; vd i sp , vget d i 5p
v i deo I i b ; vget frm , vset f rm
v i deo I i b ; vp I ay , vp 1 ayw
v i deo I i b ; vat art , vat op , vwa i i

9-2

®

Videodisc Library

Defines Needed

A lesson that uses the Micro PLATO Videodisc Library should define
and use the following constants:

Miscel laneous constant5.

vt rue = 1
vfalse = JF

yak = 0
verror = -1

Mat ion control con5tants.

vforurd = H
vrevr5e = 1

vstep = fl
v51ow = -1
vnormal = -2
yfast = -3

Display control constants.

9-3

Miero PLATO Author Language Reference Manual

Librarv Contents

TThe following sections describe the library units that aLre available in the
videodisc library. The units are broken down into three catagories:

1) Librarycontrol units

2) Videodisc control units

3) Videodisc command units

Library Control Units

The library control units are used to initialize the internal status of the
library functions and to terminate the library when its use is no longer
required by the lesson.

The following is a list of library control units available:

vinit

vfinish

9-4

initialize the library interface

terminate the library interface

vinit

NAME

vinit - initialize the Micro PLATO Videodisc Library

SENOPSIS

de vinit (port; status, port)

i ,16: Status Ss return code
i,16: port Ss serial port

DESCRIFTION

This unit initializes the Micro PLATO Videodisc Library. This unit
must be called once before using any of the other units in the
Videodisc Library. The "port" field specifies the serial port to be
used. If a serial port is not needed, it will be set to -1. In addition
to the internal initializations that are performed, the following
code is, in effect, executed:

vaudio (chan, irtrue; status)
vdir (vforuird; status)
vnum (vfalse; status)
vspeed (vTiormal ; Status)
vdisp (vcomp; Status)

RETURNS

status = vok if succe§5ful.
= verror if player is not respending

9-5

vfinish

NAME

vfinish - terminate the Videodisc Library

syNOpsrs

do vfini5h

DESCRIPTION

This unit terminates the Micro PLATO Videodisc Library. It must
be called once following the use of the Videodisc Library.

9-6

®

vfinish

Videodisc Control Units

The videodisc control units are used to control parameters that the
videodisc uses for playing images. These units allow the user to set and
check various status fields used by the videodisc.

The following videodisc control units are available:

9-7

®

®

vaudio

vgetaud

vdir

vgetdir

Vnum

Vgetnum

vspeed

vgetspd

vdisp

v8etdisp

set audio channel status

get audio channel status

set videodisc direction

get videodisc direction

set "display frame number" flag

get "display frame number" flag

set videodisc speed

get videodisc speed

select videodisc display mode

get the videodisc display mode

vaudio

NARE

vaudio - enable / disable audio

SINOpsrs

do vaudio (chan, flag; Status)

i ,16: status es return code
i ,16: clian es audio chamel number
i,16: flag Ss vtrue / vfalse

DESCRIPI'ION

The "vaudio" unit enables or disables the specified audio channel.

RE-S
status = vok if successful.

= verror if not Successful or
i f bad audio channel .

SEE Arso

vgetaud

9-8

vgetaud

NAME

vgetaud - return the current audio status

SYNOPSIS

do vgetaud (clian; flag)

i ,16: chan es audio cTiarmel number
i,16: flag es vtrue / vfalse

DESCRIPTION

The "vgetaud" urit returns the status of the specified audio
charmel.

RETURNS

flag

SEE AI.SO

vaudio

status of audio charmel.

9-9

vdir

NAME

vdir - set the current direction

SYNOPSYS

do vdir(dir; status)

i ,16: Status es return cede
i,16: dir Ss videodisc direction

DESCRIFTION

The "vdir" unit sets the current direction of the videodisc player.
The direction parameters are v foT"rd and vrevrse.

RETUENS

status = vok if successful.
= verror if illegal direction.

SEE Arso

v8etdir

9-10

vgetdir

®
NAME

vgetdir - get the current direction

SYNOPSYS

do vgetdir(; dir)

i'16: dir es videodisc direct ion

DESCRIPI.ION

The "vgetdir" unit returns the current direction of the videodisc
player.

RE-S
dir = current direction of videodisc player

SEE AI.SO

vdir

9-11

Vnun

NAME

vnum - enable / disable frame number display

SYNOPSIS

do v"m (flag; status)

i ,16: status SS return code
i,16: flag SS vtrue / vfal5e

DESCRIPTION

The "vnum" unit enables or disables the displaying of the frame
number during playback.

RETUENS

status = vok if successful.
a verror if function not supported.

SEE Arso

V8etn-

9-12

®

vgethum

®
NAME

vgetnum - return frame number display status

SYNOPSIS

do vgetnum(; flag)

i'16: flag SS vtrue / vfalse

DESCRIFTION

The "vgetnum" unit returns the current status of the frame number
display.

RETURNS

flag

SEE Arso

Vnun

frame number display Status.

9-13

vspeed

NAME

vspeed - set the curent speed

SYNOPSIS

do vspeed (Speed ; status)

i ,16: status SS return code
i ,16: speed SS videodisc speed

DESCRIFTION

The "vspeed" unit sets the current videodisc player speed. The
speed parameters are vat ep, vs I ow, vTiorma I , and v fast . A
variable speed can be selected by passing in a percentage value (1-
100).

RE-S
Status = vok if successful.

= verror if illegal speed.

SEE ALSO

vgetspd

9-14

vgetspd

9-15

NAME

vgetspd - get the current speed

SYNOPSIS

do vgetspd {; Status)

i.16: status SS return code

DESCRIPTION

"vgetspd" returns the current speed-ne of the defined speed

parameters or a percentage for variable speed.

RETURNS

Status = vok if successful.
= verror if illegal speed.

SEE AI.SO

vspeed

vdisp

NAME

vdisp - select the display mode

SENOPSIS

do vdisp (mode; Status)

i ,16: status Ss return cede
i,16: mede Ss display mode

DESCRIPTION

The "vdisp" unit selects the screen modeHomputer graphics,
video images, or both. The screen mode parameters are vcomp,
vv i deo and vv i dcom.

REnjENs

status = vok if successful.
a verror if function not supperted.

9-16

vgetdisp

9.17

NAME

vgetdisp - get the display mode

SYNOPSIS

do vgetdisp (; mede)

i,16: mede SS diaplay mode

DESCRIFTION

"vgetdisp" returns the current screen mode.

RETURNS

mode vcomp / vvideo / vvidcom.

Videodisc Command Units

The videodisc command units are used to drive the videodisc player.
These units ten the videodisc to perform a specific function.

The following videodisc command units are available:

vgetfrm

vsetfrm

vpla,y

vplayw

vstart

vstop

vwait

9-18

get the current frame number

set the current frame number

play a sequence of frames

play and wait for a sequence of frames

start videodisc at current frame

stop videodisc

wait for "play" to finish

vsetfrm

®
NAME

vsetfrm - set the cunent frame number

SYNOPSIS

do v5et frm {frame; status)

f, 48: frame SS frame number
i ,16: Status Ss return cede

DESCRIFTION

The "vsetfmr unit seeks to the specified frame number. Frame
numbers are in the range of 0 to the maximum number of frames
the player is capable of displaying.

RETURNS

status = vok if Successful.
= verror if frame number out of range.

SEE Arso

v8etfrm

9-19

vgetfu

NAME

vgetfrm - get the current frame number

syNorsls

do vget frm (; frame)

f, 48 : frame SS frame iiumber

DESCRFTION

The "vgetfrm" unit returns the current frame number. Frame
numbers are in the range of 0 to the maximum number of frames
the player is capable of displaying. If the player is playing when
this unit is called, the current frame number being played will be
returned. If that function is not supported on the videodisc player
being used, a -1 will be returned.

RETURNS

frame = current frame riumber

SEE AI.SO

vsetin

9-20

vl,lay

NARE

vplay - play a range of frames

SENOPSIS

do vplay(fstart , fstop; status)

i ,16: status Ss return cede
f,48: fstart SS frame to start at
f,48= f5top es frame to stop at

DEscRIprloN

This unit starts playing at the specified frame number and stops at
the specified frame number, according to the previously selected
control parameters.

RETURNS

status = vok if play started.
= verror if frame nuniber out of range.

CAUTIONS

Control is returned immediately to the caller for the "vplay" unit.
Can the "vwait" unit to wait until a range of play has been
completed.

Not all players support playing a range of frames at speeds other
than rmorma I .

SEE AI.SO

vplayw

9-21

vplayw

NAME

vplayw - wait for a range of frames to be played

syNolrsls

do vplayi^i (fstart , fstop; status)

i ,16: status Ss return code
f,48: fstart SS frame to start at
f,48: fstop SS frame to stop at

DESCRIPTION

This unit starts playing at the specified frame number and stops at
the specified frame number, according to the previously selected
control parameters®

RETURNS

status = vok if play started.
= terror if frame number out of range.

cAunoNs

Not all players support playing a range of frames at speeds other
than vnorma I .

SEE AI.SO

vplay

9-22

vstart

9-23

®

NAME

vstart - start the player at the current frame

SYNOPSIS

do v5tart (; frame)

f, 48 : frame SS frame number

DESCRIFTION

The "vstart" unit starts the player using the previously selected
frame number and control parameters.

RETURNS

frame = frame number started at.

vstop

NAME

vstop - stop the player at the current frame

SYNOPSIS

do v5top {; frame)

f, 48 : frame SS f rame number

DESCRIPTION

The "vstop" unit stops the player.

RETURNS

frame = frame number stopped at.

9-24

vwait

9-25

®

®

NAME

vwait - wait until the current operation is complete

SYNOPSIS

do vwa it

DESCRIFTION

The "vwait" unit waits until the current operation is complete,
such as a "vplay" unit call.

®

Chapter 10

• Digital Audio Libr

®

®

Overview
Getting Started

Obtaining the Units
Defines Needed

Library Contents
Library Control Units

ainit
afinish

Digital Audio Control Units
aopen
aclose
asetoutp

Digital Audio Command Units
aplay
aplayw
astop
await
atest

®

Overview

The Micro PLATO Digital Audio Library package allows authors to
create and defiver Micro PLATO lessons that utilize digitized audio.

To drive the audio device used, you will need the device driver
provided with your audio card and a memory resident replacement
module (MRRM) for your particular device. Contact your sales
representative for information on obtaining the latter software.

Lesson audio i ib . i sn contains a "programmer's reference" section to
assist Micro PLATO programmers in using the Micro PLATO Digital
Audio Library.

Started

To use a digital audio device with MPAS, you must first load the device
driver for your particular audio card and the MRRM that supports it.
Once the MRRM is loaded into memory, Micro PLATO lessons can
communicate with the audio device via the Digital Audio Library units.

The Micro PLATO Digital Audio Library contains units that control a
digitized audio device. To use these units you must -`obt a i n- them
from the library and also define some constants. This section explains
how to do both.

10-1

Micro PLATO Author Language Reference Manual

Obtaining the Units

The Micro PLATO Digital Audio Library contains units that control a
digital audio device. These units must be -cht a i n-ed from the library.
The fonowing -obt a i n- statements should be placed at the beginning
of your Micro PLATO lesson:

obtain audiolib;ainit,afinish,aopen,aclo5e
dud i a I i b ; ap I ay , ap I ayw , act op , awa i i , at es+
dud i a I i b ; aset out p

Defines Needed

A lesson that uses the Micro PLATO Digital Audio Library should use
the following constants. These defines are provided in file
audiodef.msc,block audio defines.

Miscel lan€ou5 constants.

floK
FffiFEOF=
flNOTINIT
PIBF]DFREG5

FneDDF=IVI

fiudio playback Status constants.

NOTPLFIYING = JF
PLflYINGLfisT = I
PLflYINGMORE: = 2

Drive apeci f ier5.

OspfiTH = -2
PLfiTOpfiTH = -1

Digital Audio Library

Librarv Contents

TThe following sections describe the library units available in the Digital
Audio Library. The units are broken down into three catagories:

1) Librarycontrol units

2) DigitalAudio control units

3) DigitalAudio command units

Library Control Units

The library control units are used to initialize the internal status of the
library functions and to terminate the library when its use is no longer
required by the lesson.

The following is a list of library control units available:

ainit

afinish

initialize the library interface

terminate the library interface

10-3

ainit

NAME

ainit - initialize the audio MRRh4 connection

SENOPSIS

do ainit (; status, version. update)

i'16: status
i,16= version
i,16: update

DESCRTION

This unit initializes the connection between Micro PLATO and the
digital-audio MRRM; you must call it once before using any other
units in the Digital Audio Library. If the audio MRRM has already
been initialized, this unit will close all active audio files and
reinitialize the MRRh4 connection. This function also returns the
version number and update level for the library being accessed.

RETURNS

status = floK if initializatioii Successful
= fiEFEROR if initialization failed

version = version numbeT-of the library
update = update level of the library

CAunoNs

If you intend to use the Digital Audio Library units, be sure the
MRRM that supports your digital audio device and the audio card
device driver are loaded before executing Micro PLATO. Both
programs are needed for the units to function correctly.

10-4

afinish

®
NAME

afinish - terminate the Digital Audio Library

SyNOPSIS

do af inish

DESCRIFTION

This unit terminates the Micro PLATO Digital Audio Library. It
must be called once following use of the Digital Audio Library.
Any audio files left open will be closed by this unit.

RETURNS

This unit has no return arguments.

10-5

Digital Audio Control Units

The digital audio control units allow you to control parameters that
open and dose audio files and set output volume levels.

The fouowing digital audio control units are available:

aopen

aclose

asetoutp

open the specified audio file

close the specified audio file

set output volume level

10-6

aopen

NARE

aopen - open the specified audio file

sENOpsrs

do

i'8:
i ,16:

i,16:

i ,16:

i ,16:

aopen {audi oFi leName, nameLengtli,
driveNumber ; Status,
dud i oF i I elndex)

and i oF i I eName (*)
naneLerlgt h
dr i veNumber
status
dud i oF. i I elndex

DESCRIPTION

The "aopen" unit opens the specified audio file. The file extension
. aud is used by Micro PLATO to identify audio files. Do 7!o£
specify the file extension, however; Micro PLATO will handle it.

The drive number specified should be the number of the Micro
PLATO drive where the specified audio file resides. To search the
operating system path for it, specify oSPF]TH for the drive number.
To search the Micro PLATO drive mapping, specify PLf]TOPFITH.
These defines are included in audiode f s . ms c.

10-7

aopen

RETURNS

Status = fioK if file opened 5ucces5fully
= F]E:F{FEOFE if file could not be opened
= fINOTINIT if audio not initialized
= fiBFIDF]FeG5 i f improper number of argumeni:5
= F]BflDDFEIVE if illegal drive number

audioF-ilelndex = index needed for further
references to the audio file,
undefinEd if the open was
un5uccess f u I

10-8

aclose

10-9

NAME

aclose - return the current audio status

syNorsls

do aclo5e{audioFi lelndex ; Status)

i ,16: audioF-i lelndex
i) 16: status

DESCRIFTION

This unit closes the specified audio file.

RETURNS

status = FloK if file closed 5ucc€s5fully
= flERROR if file could not be closed
= fiNOTINIT if audio not initialized

asetoutp

NAME

asetoutp - set the output volume level

SYNOPSIS

do asetoutp (audiochannel , volumeLevel ;
st at u5)

i , 8 : audiocharmel
i , 6: volumeLevel
i,16: status

DESCRIPI`ION

The "asetoutp" unit sets the volume level(s) for the specified
channels (left, right, or both)a The level can be any value from
0 (off) to 100 (maximum).

RETURNS

status = fioK if level Set suecessfully
= fiEFEROR if unable to set level

10-10

®

®

Digital Audio Command Units

The digital audio command units are used to control playing of audio
phrases. These units ten the digitized audio device to perform a specific
function.

The following digital audio command units are available:

aplay

aplayw

astop

await

atest

play a phrase

play a phrase and wait until completed

stop current phrase

wait for play to finish

test for audio play and return status

10-11

aplay

NAME

aplay - play audio phrase and return immediately

SENOPSIS

do aplay (audioF-i lelndex, phra5eNumber ;
Et at uS)

i ,16: audioFi lelndex
i ,16 = phraseNumber
i,1Ei: status

DESCRIFTION

The "aplay" unit will begin playing the specified phrase and return
immediately to Micro PLATO. The lesson must then call unit
"atest" in order for the audio phrase to play until it is completed.

RETURNS

status = fioK if phrase can b€ played
= f]ERFroF3 if phrase could Tiot b€ playec]
= F]NOTINIT if audio not initialized

SEE AI.SO

atest, aplayw

10-12

®

aplayw

NAME

aplayw - play audio phrase and wait until completed

SENOPSIS

do aplayw taudioFi lelndex, phraseNumber ;
5t at uS)

i ,16: audioF-i lelndex
i ,16 : phraseNumber
i,16: Status

DESCRIPTION

This unit will start playing the specified audio phrase and wait
until the phrase has been completed before returning to Micro
PLATO.

RETURNS

status = fioK if phra5€ can be played
= f]ERF!OR if phrase could not be played
= flNOTINIT if audio llot initialized

10-13

astop

NARE

astop - stop the player at the current audio phrase

SYNOPSIS

do astop (; status)

i,16: status

DESCRIPI`ION

The "astop" unit interrupts play during the current audio phrase.

RETURNS

Status = FloK if plirase stopped
= ENC]TINIT if audio not initialized

10-14

await

®

®

NARE

await - wait until the current phrase has been completed

SYNOPSIS

do await {; status)

i,16: status

DESCRIFTION

The "await" unit waits until the curently playing audio phrase has
been completed, then returns control to Micro PLATO.

RETURNS

status = floK if phrase completed
= FINOTINIT if audio not initialized

10-15

atest

NAME

atest - check the current audio status

syNolrsls

do atest (; status, audiostatus)

i,16: Status
i ,16: audiostatus

DESCRIPTION

This unit checks to see if an audio phrase is culTently being
played. If one is, it returns the current status of the audio phrase.

RETURNS

Status = F]OK if test succe5§ful
= FINOTINIT if audio not initialized

aud i ost at us NOTPLF]YING if no playback in
progress
PLfiYINGLflsT i f phrase playing but
no more disk data is required
PLF]YINGMORE i f phrase playing and
more disk data is required

10.16

®

®

Chapter 1 1

• Micro PLATO Language
Routines LibraIV

Overview
Automatic Signon / Sign-off Routines

netinit
si8non
si8noff

Modern Autodial Routines
dtoa
Corrm

Sending Data
Sending and Receiving Data
Receiving Data

Date, Time and Day Routines
date
clock
day
cdates
cdatef
cdatev
ctimes
ctimef
ctimev

®

®

Overview

The Micro PLATO Language Routines Library package allows authors
to use standard Micro PLATO routines for specific applications. To use
the Micro PLATO Routines Library units in your Micro PLATO lesson,
you must -obt a i ii- the units from the library, which is in lesson
s Omp i ib . i sn. The list of available routines, along with the -obt a i Ti-
statements needed to access them, is as follows.

Automatic Sign-on / Sign-off Routines

obl:aim 5flmpl ib;net init ,sigTion,=ignoff

Modern Autodial Routines

obtain sJrmpl ib;comm,dtoa

Date, Time, and Day Routines

obtain sHmpl ib;date,clock,day

Date Conversion Routines

obtain 5Hmpl ib;cdates,cdatef,cdatev

Time Conversion Routines

obtain sJFmpl ib;ctimes,ctimef,ctimev

The documentation on each of the routines follows.

11-1

Micro PLATO Author Language Reference Manual

Automatic Sign-on / Sign-off F]outines

The automatic sign-on/sign-off routines allow you to sign on and off the
PLATO application without pressing any keys. This assumes that you
have already dialed into the appropriate network, if necessary.

The user's name, group, password, and optional delay are passed to a
system library unit which is responsible for signing the person on as
well as detecting any errors in the name, group, and password.

The automatic sign-on/sign-off units should be -obt a i n-ed as follows:

obtain sflmpl ib;netinit,signor,signoff

The lesson must set three arrays with the user's name, group and
password. Once the network has been initialized via the net i n i i unit,
the.lesson can then pass the user's signon data to the central PLATO
system with the a i gnon unit.

For example:

LILn i i

system

*
Zero
Zero
Zero
*

pack
pack
pack
*

11-2

I ogon S$ log onto the central

i,3: riane(lB)
i,8: group(a)
i,8: pas5u-d(1fl)
i,16: return

Tlane (I) ,18
group (I) I 8
pas5wd (1) ,1fl

name (1) , , Student
group (1) , , izpdev
passwd (I) , , secret

*-- check tlie network 5tatu5
*

Au(omatic Sign-on / Sign-off Routines

do net init (;return)
*
*-- send signon data, use default delay parameter
*
do a i gnon (name , group , pa5§uJd ; ref urn)

To complement the a i gi'i-on library unit, unit E i gno f f is provided.
When unit a i gi'io f f is executed, it sends a request to the central PLATO
system to sign-off the terminal that is sending the request. The terminal
will be returned to the "Press NExr to begin" page or to the appropriate
network logon page.

For example:

do signor f
request

SS send log of f

The fouowing pages describe the parameters to these three units and
their possible error returns.

11-3

netihit

NAME

netinit - initialize the network connection

SYNOPSIS

do netinit (; Status)

i,8: Status

DESCRIFTION

This unit attempts to connect to the PLATO network and returns a
status to indicate whether or not it was successful.

RETUENS

-1

0

CAUTIONS

11-4

the network initialization was successful
the network initialization was not successful

This unit will only work for terminals connected via the CIU or
Direct ASCII (PNI) networks.

si8non

NAME

signon - pass the user's signon to PLATO

SENOPSIS

do 5ignon (name, group. pas5nd, delay; 5tatu5)

i,8: name(18)
i,8: group(8)
i,8: pa5snd(lH)
f,48: delay
i,16: §tatu5

es user's sigTion info

SS optional delay
Ss return status

DESCRIFTION

This unit passes the user's signon information to PLATO for
processing and returns a status code to indicate the success or
failure of the signon process.

If the de lay parameter is omitted or delay ± H, then a .25
second delay is assumed. This time delay is inserted between keys
during the automatic sign-on sequence.

11-5

signon

RETURNS

-1

0

2

3

4

5

the sign-on was successful

data transmission error
(the system is up, but it incorrectly received
the sign-on information)

communication problem with the central system
(the system could be down, or the phone line
discormected, etc)

the specified group does not exist

the name does not exist in the group

the password is not correct

sign-on was not successful for some other
reason:

- the group's account is using the maximum
number of subscriptions

- there is insufficient computer memory at this
time

11-6

signoff

NAME

signoff - signoff central PLATO

SyNOPSIS

do signor f

DESC-ION

This unit sends a request to the central PLATO system to sign-off
the terminal that is sending the request. The terminal will be
returned to the "Press NEXT to begin" page or to the appropriate
network logon page.

cAunoNs

Please note that unit a i gi'io f f does not know whether or not you
are connected to the central PLATO system or if the backout was
successful.

11-7

Modern Autodial Routines

Modern Autodial F3outines

Users of the Micro PLATO Language may use two library units from
this library file, s Omp i ib . i s n, for the purpose of autodialling a
modem. The unit names are comm and dt oa.

Unit comm allows a Micro PLATO lesson to use the communications
port of the terminal to send commands to an external autodial modem.
This unit can also be used to log on to a network. Unit comm cannot be
used with any of the IsT series terminals. .

Uhit dt oa converts a string of Micro PLATO Language display codes
(also known as internal codes) into a string of ASCII codes. This can be
used to convert the output of a pack- command (for example) into
ASCII codes needed by unit comm.

The two units are described in detail on the following pages.

11-8

®

dtoa

NAME

dtoa - convert display codes to ascii codes .

SENOPSIS

do dtoa(; ; array, alength)

i,8: array(*) SS array of character codes
i,16: alength es length of characl:er string

DESCRIFTION

Unit dt ca converts an array containing Micro PLATO display
codes (also known as internal or 6-bit codes) into ASCII codes.
One array can be converted by each call to dt oa. The array must
consist of 8-bit bytes and the usable length of the array must be
passed in a 16-bit variable.

Here is an example of using dt oa:

obtain sflmpl ib;dtoa
define i,8=array(3m

i , 1 6 : a I engt li
* code, , ,
pack array (I) ,alengtli, Hi Tliere
*

Now array contaiTis alength bytes of
display cedes.

dt oa (; ; array , a I engt h)

Now array contains alength bytes of
f]SCII cedes.

11-9

dtoa

11-10

Some ASCII codes do not have corresponding PLATO display
codes. Examples of this are the ASCII CR (carriage return) and
ESC (escape) codes. You can instruct unit dt oa to insert one of
these special ASCII codes into the array of ASCII bytes by putting
a \ (ACCESS-/) character followed by three octal digits into the
string of display codes. The following example shows two ways
of producing the four-byte ASCII array A 8 CR C:

obtain sffmplib;dtoa
define i,a:array{3JJ)

i I 16 : alen
CF= = ofll5
codel 1,

ack array (i) ,alen, fiB`Jrl 5C
a dtoa (; ;array, alen)

Or
ack array (I) ,aleTi, FIB\{o,CR, 3}C
a dtoa (; ;array, alen)

If you want to include the ASCII \ character in the array, you
must include it twice in the display code array (\\). This tells
dt oa that you want an ASCII backslash character and that you are
not inserting an octal representation of a byte.

CO-

NARE

colnln -transfer ascii data to/from comm port

SINOPSIS

do comm (; status; array, aleng{ti)

i,16: status SS returned status
i,8: array(*) SS array of ascii codes
i,16: alength SS length of array

DESCRIPTION

Unit comm allows a lesson to transfer ASCII data to and from the
communications port of the terminal, and thereby control an
external modem.

RETURNS

Regardiess of the type of call you make to unit comm, it will set the
st at u5 variable to one of the following values:

-1 No errors occurred. If an expect array was passed; this
indicates that the expected response was received.

0 Incorrect terminal type; you must use a zenith z150, an IBM
PC, or a PC-compatible machine.

1 (Unused)

2 Timeout occurred before the expect string was received. If
you omit the expect argument and supply a recvd
argument, you will always get this status value.

11-11

CO-

There are three general ways to use unit comm:

- to send data out the communications port

- to send data out and waitforaresponse

- towaitforaresponse.

Sending Data

To send data out the communications port, the desired ASCII bytes are
packed into an array that is passed by address to the comm unit, along
with the number of bytes to be sent.

Here is an example of sending data using unit comm:

obtain §#mplib;dtoa,comm
define i,16:alength

*

*

pack
do
do

i , 8 : array {3fl) , stat us
clef ine special F]SCII cliaracter codes.
CF!=ojr 1 5
code,I,
array (1) , a I engt h , F]TH\{o , CFE , 3}
dt oa (; ; array , a I eng{ h)
comm (; 5t at u5 ; array , a I engt h)

Sending and Peceiving Data

You can also use unit comm to send a series of bytes out the
communications port, then wait for a particular response to be received.
You can specify how long unit comm should wait for the response.

Whether the expected response is received or not, unit comm will return
a status code and (optionally) an array containing the most recent bytes
received from the communications port. The timeout parameter must

11-12

CO-

be expressed in units of seconds. Each array that is passed must consist
of 8-bit bytes, and must be accompanied by a 16-bit variable that
contains the usable number of bytes in the array.

Here is an example that sends the ASCII string "ATH\n" to the
communications port, then waits 2 seconds for the expected response
OK.

define i,16: sleTi,glen,rlen

lc

i,a: send(1#) , expect (2jr) , recvd(3fl)
i,3: wait, 5tat
clef ine tlie special Fl=CII character codes.
CF3 = oj715

code, ,I
Send (1) , a I en , BTH`{o , CR , 3}
expect (I) ,elen,OK
dtoa[;; send, glen)
dtoa(;; expect, elen)
wait i± 2

comm (wa i i ; st at ; seiid , a I en , expect , e 1 en , recvd , r I en)

Uhit cc.mm zeroes the entire recvd array before it starts receiving data
from the communications port. When comm is finished, the recvd array
contains the most recent bytes received from the communications port,
and the r I en variable indicates how many bytes were saved.

Byte recvd (r I en) will contain the newest byte received, and
recvd (I) will contain the oldest byte that was received and saved.

The recvd array is valuable for handling error conditions.

For example, if unit comm times out before the expect array is received,
the Micro PLATO lesson can search the recvd array to see if an error
message was received instead of the expected response.

11-13

C0rnm

Receiving Data

If you do not want unit coirm to send anything before waiting for a
particular response, you can omit the send argument. If you omit the
i i meout argument, a default timeout period of five seconds will be
used.

Here is an example that waits for the response OK. The default timeout
period is used.

define i,16: elen, rlen
i,8: expect (2fl) , recvd(3fl)
st at us

*

pack
do
do

code, , .
expect (i) , e I en , OK
dtoa(; ; expect,glen)
comm { ; status; , ,expect ,elen,recvd,rlen)

You can omit the expect and e I en arguments if you do not want to
watch for a particular response. Unit comm will fill up the recvd array
until the timeout period elapses.

You can omit the recvd and r I en arguments if you do not want to
examine the data received from the communications port. If you
specified an expect array, unit comm will still search for the expected
response.

If you omit the expect and r€cvd arguments (and their respective
lengths), unit comm will return immediately after sending the data in the
Send array.

Note that when you omit arguments you must be careful to insert the
necessary number of commas into the pass-by-address argument area.

11-14

Date, Tine, and Day Routines

Date, Time and Day Routines

The date, time and day routines allow you to access this information
from your Micro PLATO lesson and select the format for displaying this
information to the student.

The routines to access the date and time information can be accessed by
using the following command in your lesson:

obtain s#mpl ib;date,clock,time

The routines for converting the date into one of several formats can be
accessed via:

obtain sJFmpl ib;cdates,cdatef,cdatev

And the routine for converting the time into one of several formats can
be accessed via:

obtain sHmplib;cl:imes,ctimef,ctimev

Each of these units is described in more detail in the following pages.

11-15

date

NAME

date - returns the date

SYNOPSIS

do date(; String, return)

i,8: string(*)
i,16: return

DESCRIFTION

Unit date returns the date from DOS in the fom` " mm/dd/yy "
The spaces are always present.

To convert to another format, use unit cdat e5.

RETUENS

if the operation was successful
an error occured

EXAMPLE

un i i: get ddt e
5tlen = 11 SS String lengtll
i,a: 5tring[5tlen) 'SS alpha date string
i,16: return SS return status: -i =

ok
do date(; 5triTig, return)
if return = -1

at lJFIH
write Today'5 date i5 {a,string(5tlen)}.

end i f

11-16

clock

NAME

clock - returns the time

SYNOPSIS

do clock(; string, return)

i,a: string(*)
i,16: return

DESCRIFTION

Unit c I ock returns the date from DOS in the form
" hh.mm.§5 ". Thespaces are always present.

To convert to another format, use unit ct i meg.

RETURNS

-1

0

EXANILE

if the operation was successful
an error has occurred

unit gett ime
5tl€n = 11 SS string lengl:h
i,a: String(stlen) SS alpha date String
i,16: return SS return stai:u5: -I = ok

do clock(; String, return)
if return = -1

at lHlff
write The current time is {a,string(5t len)}

* Note that no ending period is needed
t
endi f

11-17

day

NAME

day -returns number of days since 12/31 /72

SYNOPSIS

do day(; fday, return)

f,4B: fday
i,16: return

DESCRIFTION

The day routine converts c I ock and ddt e values to -day-
values. The -day- command is a TUTOR Language command
that measures elapsed time. It puts into the specified variable
(fday) the number of days passed since midnight Sunday,
December 31, 1972. The day counter continues from year to year;
it is not reset at the end of a year. This routine will work for days
between January 1, 1973 and December 31, 1999.

The fday value returned is a floating point value.

RETURNS

if the operation was successful
if the day value cannot be computed

11-18

day

11-19

EXAMPLE

unit

end i f

getday
f,48: fday SS day value
i,16= return SS return Status: -1 = ok
day{ ; fday, return)
return = -1
at lHIJF
write The day value is {5, fday}

cda(es

NARE

cdates - convert date string to selected format

SYNOPSIS

do cdate5(string, format ; result , return)

i,8: string(*) SS input date string
i,16: format SS input format 1,2,3
i,8: result(*)
i,16: return

DESCRIPTION

Uhit edat es takes a string passed from unit ddt e and converts it
to another format, according to the argument format , and stores
it in the string resu 1 I .

Possible values for format are:

The standard American format.
Standard European format:
"Computer" standard format:

mm,dd/yy
dd/mm/yy
yy/mm/dd

If the argument format is omitted, the format used is the
American format, " mm/dd/yy ".

RETURNS

if the operation was successful
an error has occurred

11-20

cdates

EXAMPLE

unit

endi f

date for
stlen = 11 S$ 5l:ring lerigth
i,8: string(*) SS input date a+ring
i,16: format SS input format I,2,3
i,8: result (stlen) SS result date string
i,16: return Ss return 5tatu5: -I

code, , ,
cdates (string, format ; result , return)
return = -i
at 1 JFIJr
u.rite Today'5 date i5 {a,result {st len)}.

11-21

cdatef

NAME

cdatef - convert day format to a date

SENOPSIS

do cdatef (day, format ; result , return)

f,48= day SS input day value
i,16: format SS input format 1,2,3
i,a: result(*)
i,16: return

DEScRIprloN

Unit cdat e f is a routine to convert a number in -day- format to
the corresponding year, month, and date. The year is returned as
the last 2 digits (i.e., 86, not 1986). This routine will work only for
dates between January 1, 1973 and December 31, 1999.

The argument day is a floating point number that has been
retuned from unit day.

See the cdat es unit for possible date formats.

RETURNS

if the operation was successful
an error has occurred

11-22

cdatef

11-23

EXANILE

unit fordmy
stlell = 11
f'48: day
i,16: format

SS string length
es day value
se input format 24,12

i,a: result(stlen) Ss result date string
i,16: return SS return statu§= -I

cede, , ,
cdatef (day, format ; result , return)
return = -i
at lHlff
write Today.a date i5 {a,result (stlen)}.

cdatev

NAME

cdatev - converts day, month and year to selected format

SYNOPSIS

do cdatev(day, month, year, format; result,
ref urn)

i'16: day
i,16: montli
i.16: year
i,16: format
i,8: result(*)
i,16: return

DESCRIFTION

Unit cdat ev takes the arguments day, mont h, and year and
formats them in a string according to the given format. The
variable day must be in the range 1 to 31; mont h must be in the
range 1 to 12; year in the range of 0 to 99 or greater than 1900.

See the cdat es unit for possible date formats.

RETURNS

if the operation was successful
an error has occulTed

11-24

cdatev

EXAMPLE

unit

ok
*
do
return)
if

end i f

dmyfor
stlen = 11 SS string length
i,16: day, month, year
i,16: format SS iTiput format 1,2,5
i,8= result(stlen) SS result date string
i,16: return es return status= -I =

code,11
cdatev(day, montli, year, format; result,

return = -1
at lJ„H
write Today.a date is {a,result {stlen)}.

11-25

ctines

NAME

ctimes - convert time string to selected format

SYNOPSIS

do ctim€s(si:ring, format; result, return)

i,8= string(*) SS input date String
i,16: format SS input format 24,12
i,8: result(*} SS result date String
i,16: return

DESCRIPTION

Unit ct i meg takes as an argument the string obtained from unit
c I ock and converts it to another format, according to the
argument format , and stores the result into the string resu I i .
The string returned win be at least 13 bytes long, and is null
terminated.

Possible values for format are:

24

12

11-26

The 24 hour clocko Output is in the form
" 13.JFff. 34 I.. Notice thefinalperiodis omitted.

The 12 hour clock using am or pmo The string will
have the form " hh . mm . s5 xm " a
For example: " 12 : 33 : 23 pm''

If format is omitted, the value returned is formatted in 24-hour
time.

ctimes

RETURNS

everything worked correctly
input variable st r i ng; has bad forlnat
input variable format has a bad value
wrong number of arguments passed to this unit

EXAhffLE

unit i imefor
stlen = 13 SS string length
i,a: string(*) SS input date string
i,16: format SS input forimat 24,12
i,8: result(stlen) SS result date string
i,16: return es return status: -I

code,I,
ctimes(string, format; result, rei:urn)
retu`rn = -i
at lfllH
write The current time is

<a , resu I i (st I en) }
end i f

11-27

ctinef

NAME

ctimef - convert day value to time

SYNOPSIS

do ctimef {day, format; result, return)

f,4a: day SS incoming -day-value
i,16: formal: SS incomiiig format 24,12
i,8: 'result (*] SS result returried
i,16: return

DESCRIPTION

Unit ct i me f takes the fractional part of the argument and
converts it to a string representing the time according to the time
which is returned in the return variable resu I i , according to the
argument format . The argument day is a floating point number
that has been returned from unit day.

See the ct i mes unit for possible time formats.

RETURNS

11-28

everything worked correctly
input variable day has bad format
input variable format has a bad value
wrong number of arguments passed to this unit

ctinef

EXAMPLE

un i i forlims
stlen = 13
f'48: day
i,16: format

S$ String length
SS incoming -day- value
SS incoming format 24,12

i,8= result (stlen) SS result rel:urned
i,16= return SS return status: -1

code, , ,
ctimef (day, format; result, return)
return = -I
at 1 JFIJF
write The current time is

{a , resu I i (st I en) } .
end i f

11-29

ctimev

NAME

ctimev - converts hours, minutes and seconds into selected
format

SYNOPSIS

do ctimev(hour, min, 5ec, formal:; result,
ref urn)

i,16: hour
i,16: min
1,16: 5ec
i,16: format
24' 12
i,8: result(*)
i,16: return

SS incc}ming formai=

SS result returned

DESCRIFTION

Uhit ct i mev takes the arguments liours, in i n, and 5ec, and
formats them in a string according to the format . The variable
hours must be in the range 0 to 23; in i n in the range 0 to 59; and
s€c in the range 0 to 59.

It is possible to pass in fewer arguments. Two arguments are
interpreted as hours and in i n, and the time is formatted in the 24-
hour format. Three arguments are interpreted as hours, in i n, and
see. The 24-hour format is then used.

RETURNS

everything worked correctly
input variable has bad format
input variable format has a bad value

11-30

ctimev

®

®

EXANILE

un i i hms for
5tlen = 13 SS string lengtli
i,16: hour, min, 5ec
i,16: format SS incoming format 24,12
i,a: result{stlen) SS result returned
i,16: return SS return Status: -I =

ok
* cede, , ,
do ctimev(hour, min, §ec, format; result,
return)
if return = -1

at 1#1H
write The current time is

{a , re5u I i (st I en) } .
end i f

11-31

®

Index

®

0

* 3-2, 3-3

$ 3-2, 3-3
S$ 3-2, 3-3
Sars$ 2-36
S/block 3-4, 3-10
Sdss operator 2-36
* corrments 3-2, 3-3
SS comments 3-2, 3-3
Sdiffs operator 2-38
S/endlabel 3-5
S/label 3-5, 3-6
S/list 3-7
Smasks operator 2-38
S/touch 3-9
Surions operator 2-38
S/use 34, 3-10
Access modes

sysfile open 2-247
adose 10-9
Adaptable arrays 5-5, 6-12

tmesolved 6-12
Address passing 6-11
afinish 10-5
ainit lord
anow 2-1, 2-141

arrow 2-1
blanks 2-1, 2-5, 2-101, 2-141
erase 2-1
jkeys 2-2
keys 2-2
lkeys 2-2, 2-142
plato 2-2, 2-142

al08 2-258
Altemate font 243, 246, 2-187

and
Sands operator 2-34
Smasks operator 2-37

arrsv 2-3, 2-177, 2-242, 2-263, 4-28
tolerance 2-3

answer 2-4, 2-101, 2-121,
2-145-146, 2-177, 2-259,
2-261, 441, 446

answerc 2-6, 2-177, 2-262
aopen 10-7
aplay 10-12
aplayw 10-13
arc 2-197
arcs, drawing with -circle-

co-and 2-47
arctan 2-258
Argument passing 2-86, 2-250,

5-5, 6-1
adaptable arrays 6-12
by address 6-8, 6-11
by value 6-8
evaluation order 6-6
expressions 64
limits 6-3, 6-6, 6-9
number of arguments 4-3, 4-4
pass by address 4-4
syntax 6-8
value type conversion 6-5
variables 64
with -return- 6-8, 6-9
with unit libraries 7-2

Arguments
input 6-1
Output 6-2

I-1

Micro PLATO Author Language Reference Manual

Arithmetic op erations
promotion to 16-bit integer

2-28
Arithmetic operators 2-31
Arrays

with argument passing 6-8
arrow 2-7, 2-21, 2-63, 2-68, 2-97,

2-110-111, 2-127, 2-132,
2-134-135, 2-138-139,
2-141-143, 2-144, 2-148,
2-149, 2-162, 2-189, 2-191,
2-257, 2-258, 4-17, 4-18, 441,
446

use with -long- 2-162
asetoutp 10-10
Assigrment

operator 2-31
precedence 2-32

Asterisk
with adaptable arrays 6-12

astop 10-14
at 1-2, 2-9, 2-90, 2-112, 2-193-195,

2-197, 2-255, 2-259, 447
atest 10-16
atrm 2-10, 2-195, 2-197
attach 2-70, 2-106, 4-34

access mode 2-11
drive specification 2-11

await 10-15
axes 2-13, 2-18, 2-114

back 2-14, 2-167, 6-6
backl 2-14, 2-167
background color 2-51, 2-54
base -2-15, 2-131
base unit 2-149
beep 2-16
binary 2-238
Bit operations 2-35

I-2

block 2-17
Bold 2-240
bounds 2-13, 2-18
box 2-19, 2-20
branch 2-20, 2-90, 2-135
Branching

with argument passing 6-6
buffer 2-21, 2-25, 2-26, 2-96, 2-143,

4-19, 5-3, 8-7, 8-11
input 2-23
setup 2-21-2-25, 5-3

c 3-2, 3-3
c comments 3-2, 3-3
calc 2-75, 2-76, 2-90, 2-133, 2-184,

6-5
expressions 2-27

Call by address 6-11
Call by value 6-8
catalog 2-81
ccode 241
cdatef 11-22
cdates 11-20
cdatev 11-24
char command 2-45
Character

constants 2-30
Character set format 2-43
Character sets

opening character set files
2-246

charlim command 243, 2-45, 2-46
charset command 2-43, 2-45, 2-46
circle 2-47, 2-114, 2-197
circleb 2-47, 2-48
clrkey 249, 2-118, 2-183
Coarse grid 2-9, 2-93
color 2-256, 4-5, 4-14

complement 2-166

®

Index

I-3

color command 2-50
cautions with logical screens

2-227
color complement 2-58
color define 2-52, 2-53, 2~56
color display 2-51
color palette 2-54
color replace 2-51, 2-52, 2-53,

2-56, 2-59
embedded color display 2-53
saving palette numbers 2-55

co- 11-11
use of 11-12

Corrunands 1-2
S/block 3-4
S/endlabel 3-5
S/label 3-6
S/ust 3-7
S/touch 3-9
S/use 3-10
allow 2-1
ansv 2~3
answer 24
auswerc 2-6
7AIf IN 2;I
at 2-9
atnm 2-10
attach 2-11
aLxes 2-13
back 2-14
backl 2-14
base 2-15
beep 2-16
block 2-17
bounds 2-18
box 2-19
branch 2-20
buffer 2-21
calc 2-27
calcc 2-39

Commands, continued
calcs 240
ccode 241
char 2-43
charlim 245
charset 2-46
drcle 247
drdeb 2-4748
clrkey 249
color 2-50
color complement 2-58
color define 2-53
color display 2-51
color palette 2-54
color replace 2-56
corrments 3-2, 3-3
compute 2-60
copy 2-63
cstart 2-65
cstop 2-66
cstop* 2-67
darrow 2-68
data 2-69
datain 2-70
dataout 2-70
define 2-72
disk 2-81
do 2-86
dot 2-88
doto 2-89
draw 2-92
else 2-94
elseif 2-94
enable 2-80
endarrow 2-97
endif 2-98
endloop 2-99
erase 2-100
exact 2-101
exactw 2-102

Micro PLATO Author Language Reference Manual

Commands, continued
file 2-103
fill 2-108
find 2-109
force 2-110
gatrm 2-112
gbox 2-113
gdrcle 2-114
8dot 2-115
gdraw 2-116
getkey 2-118
getloc 2-119
getmark 2-121
gfill 2-124
gorigin 2-125
goto 2-126
gvector 2-128
hbar 2-130
help 2-131
ianow 2-132
if 2-133
iinatch 2-135
ijudge 2-138
irmin 2-140
inhibit 2-141
inrfupt 2-143
jkey 2-144
judge 2-146
jump 2-149
jumpn 2-150
junpout 2-151
keynst 2-153
keytype 2-155
keyword 2-158
lab 2-159
1abl 2-159
labelx 2-160
1abely 2-160
lesson 2-161
long 2-162

I-4

Commands, continued
loop 2-163
markx 2-164
marky 2-164
mode 2-165
next 2-167
nextl 2-167
obtain 2-171
offer 2-173
ok 2-174
okword 2-175
or 2-177
outloop 2-178
pack 2-180
paint 2-182
pause 2-183
press 2-188 .
pseudo 3-1
putd 2-190
randp 2-192
randu 2-193
rat 2-194
ratrm 2-195
rbox 2-196
rcircle 2-197
rdot 2-198
rdraw 2-199
receive 2-200
release 2-201
reloop 2-202
remove 2-203
reserve 2-204
restart 2-206
restartq 2-206
restore 2-208
retun 2-209
rfill 2-211
rorigin 2-212
rotate 2-213
rvector 2-214

®

Commands, continued
scalex 2-215
scaley 2-215
score 2-216
screen 2-217
search 2-228
searchf 2-230
sendkey 2-232
set 2-233
setperm 2-235
show 2-236
showa 2-237
showb 2-238
showh 2-238
showo 2-238
showt 2-239
size 2-240
specs 2-241
stop 2-243
sysfile 2-244
tab 2-248
tabset 2-246
textn 2-249
unit 2-250
vbar 2-130, 2-251
vector 2-252
widow 2-253
whte 2-255
wrong 2-4, 2-261
Vlongc 2-6, 2-262
wrongv 2-3, 2-263
xin 2-264
xmit 2-265
xout 2-266
7!f er:I j Tprf Ifl

comments 3-2, 3-3
*3-3

c3-2
Complementary colors 2-59
compute 1-3, 2-61, 2-148, 4-28

Index

Configuration
pins for RS232C 8-1

Constants
character 2-30
hexadecimal 2-30
octal 2-30

Conversion
automatic value type 6-10
value type 6-5

Coordinates 2-9, 447
copy command 2-64
cos 2-258
CPU 2-142, 2-200, 2-265

and -sendkey- 2-232
cstop 2-66, 267, 2-134
cstop* 2-66, 268
ctimef 11-28
ctimes 11-26
ctimev 11-30

darrow 1-3, 2-68
data 2-69, 2-131
datal 2-69, 2-131
datain 2-70-71
dataout 2-70-71
datasets 2-11, 2-70, 2-76, 2-103,

4-34
Date 11-16
Day 11-18,11-22,11-29
Default return arguments 6-9
define 1-3, 2-70, 2-72-79, 2-134,

2-151, 5-6
Defined functions 2-73
Degrees 5-1
detach 2-11
Device address 8-1, 2-264
Digitized audio

aclose 10-9

I-5

Micro PLATO Author Language Reference Manual

Digitized audio, continued
afinish 10-5
airLit 104
aopen 10-7
aplay 10-12
aplayw 10-13
asetoutp 10-10
astop 10-14
atest 10-16
await 10-15
command units 10-11
control units 10-6
defines needed 10-2
library control Lmits 10-3
obtairing the ults 10-2

disable 2-80, 2-95, 2-143
disk 2-81

catalog 2-81, 2-82
space 2-81, 2-84

disk command 2-81
do 2-78, 2-86-87, 2-126-127,

2-129, 2-132, 2-138-140,
2-143, 2-148, 2-171,
2-209-210, 2-250, 5-5, 7-8

do attachb 2-127
do q 2-87
dot 2-88, 2-92
doto 2-20, 2-89-91
draw 2-88, 2-92-93, 2-116, 2-165,

2-198, 4-47
dtoa 11-9

Ellipse 2-114, 2-197
else 2-94, 2-133-134
elseif 2-94, 2-133-13-4
embedded answer 24
Embedded commands

color 2-54
show 2-236, 2-255

I-6

enable 2-26, 2-80, 2-95, 2-143,
2-184, 4-19

ext 2-24, 2-96, 2-143, 8-7
enable, continued

interaction with -pause- 2-184
touch 2-95, 2-184

endarrow 2-7, 2-97, 2-127, 2-135,
2-147, 2-174

endif 2-98, 2-133
endloop 2-99, 2-163, 2-178
Equivalence 2-76
erase 2-51, 2-55, 2-100, 2-141,

2-165, 2-253
complementary colors after

screen erase 2-59
error, numerical 2-30
Evaluation order of arguments 6-6
exact 2-101-202, 2-177
exactw 2-101-102
Example code 11-12
Exclusive mode

sysfile open 2-247
exdented commands 2-8, 2-178
Execution errors 6-4
exp 2-258
Exponentiation 2-258

in compute command 2-60
of negative numbers 2-31
operator 2-32

Expressions 2-30
allowed in -calc- 2-27

ext 4-19
enabling external keys 2-95

Extra words 2-234, 4-13

Feedback 2-175
Fields, argument passing 6-8
File 2-82, 2-85, 2-87, 2-103, 2-105

catalog 2-82
create 2-103

File, continued
destroy 2-104
name 2-103, 2-105, 2-106
rename 2-104, 2-105

File access modes
sysfile open 2-247

file command 2-103
File Information Package (FIP)

defined 2-244
use with -reserve- and -release-

2-204
File loc]dng, reserve 2-204
File locks 2-206
File naming 2-12
Files 2-11
fill 2-108, 2-124
find 2-109, 2-111
Fine grid 2-9, 2-93
Floating point 2-72
Floating point format 2-77
font 246
force 2-110, 2-111, 2-162

caps 2-110, 2-111
font 2-110, 2-111
left 2-110, 2-111
long 2-8, 2-110, 2-111
use with -long- 2-162

foreground color 2-51, 2-54
Functions 1-3, 2-73

recognized by compute 2-60
restricted to -calc- type

corrmands 2-28

gat 2-112, 2-114, 2-125
gatrm 2-112, 2-114
gbox 2-113, 2-125
gcircle 2-114, 2-125
gdot 2-115
gdraw 2-88, 2-115-116, 2-198

Index

getchar 2-117
getkey 249, 2-118
getloc 2-119-120
getmark 2-121
gfill 2-124
global variables 2-72
gorigin 2-13, 2-18, 2-112,

2-115-116, 2-124-125
goto 2-126-127, 2-150, 2-250, 6-2,

6-8, 6-10

q 2-127, 2-129
grid 2-9
gvector 2-128

hbar 2-130, 2-251
help 2-15, 2-69, 2-131, 2-138, 2-140,

2-159, 2-250, 66
Help sequence 2-15, 2-131, 2-149
helpl 2-131
hexadecimal 2-238

constants 2-29

I/0 charmel 8-1
ianow 2-132
if 2-94, 2-98, 2-133-134, 2-147,

2-163
ifmatch 2-8, 2-97, 2-135-137,

2-147, 2-174
ijudge 2-138

q 2-138
imain 2-132, 2-138-140
Indented commands 2-8

in -loop- 2-163
inhibit 2-1, 2-141, 2-142

arrow 2-141
bl-anks 2-141
erase 2-141, 2-149

I-7

Micro PLATO Author Language Reference Manual

inhibit, continued
-inhibit lkeys- contrasted with

-sendkey- 2-232
jkeys 2-142, 2-144
keys 2-142
Hceys 2-142
plato 2-142

Input, serial channel 8-1
Input arguments 6-1
Input buffer 2-188
Input status word 8-6
Integer 2-72

8 and 16 bit 2-29
truncation 2-29

Integer formats 2-77
Intermpt control 8-7
interrupts 2-22, 2-143, 8-7

enabling 2-96
Introduction 1-1
intrupt 2-21, 2-96, 2-143, 8-7
inverse text 2-166

jkey 2-8, 2-111, 2-144
join 2-127
judge 2-146-148, 4-18

exdent 2-147
exit 2-147
ignore 2-147
no 2-147
noquit 2-147
ok 2-146
okquit 2-147
quit 2-147
unjudge 2-147
wrong 2-146
x 2-147

judging 2-3, 24, 2-146, 2-174,
2-177, 4-12, 4-17-18, 4-27,
4-29, 4-46

I-8

jump 2-95, 2-131, 2-140,
2-149-150, 2-168, 2-250, 6-2,
6-8

jumpn 2-150, 2-168, 6-2, 6-8
jumpout 244, 2-151-152, 2-171,

2-253, 7-8

key 2-265
key buffer 249, 2-188
Key values 54
keylist 1-3, 2-144, 2-153, 2-155,

2-157, 2-183
Keys

COPY 2-63
FONT 246

keytype 1-3, 2-153-156, 2-183, 3-9
keyword 2-158, 2-177

lab 2-131, 2-159
1abl 2-131, 2-159
label 2-20, 2-89
1abelx 2-160, 2-164
labely 2-160
Left shift 2-36
lesson 2-161, 4-23
lesson command 2-161
Library files 2-171
Library unit restrictions 7-2
Library units, private 7-8
Lirfuts

argument passing 6-3, 6-6, 6-9
unit libraries 7~2

1n 2-258
Local define sets 2-78
Local unit name 7-4
Local variables 2-72, 2-78
Locks, insufficient number of

2-208

log 2-258
logical expressions 2-34, 2-133,

2-178
in -loop- 2-163

Logical operators 2-33
Logical screens 4-26, 4-39

definition 2-222
setting colors 2-51
setting transparent color 2-52

long 2-110, 2-162, 4-17
loop 2-89, 2-99, 2-163, 2-178-179,

2-202

main unit 2-1, 2-15, 2-111, 2-127,
2-132, 2-140-141, 2-149,
2-210

screen mode upon entry 2-165
markup 2-121, 2-241
markx 2-160, 2-164
marky 2-160, 2-164
Mathematical functions 2-73, 5-1

abs 5-1
al08 5-1
arctan 5-1
comp 5-1
cos 5-1
exp 5-2
frac 5-2
int 5-2
1n 5-2
log 5-2
sin 5-2

Mathematical precedence 2-32
Merge, global 2-79
Micro PLATO Language

corrmands 2-1
pseudo commands 3-1

Misspening 2-242, 441
Mode 2-166

Index

Mode, continued
bold 2-258
complement 2-58, 2-166
erase 2-51, 2-108, 2-124, 2-165
inverse 2-51, 2-108, 2-124, 2-166
rewrite 2-51, 2-108, 2-124, 2-165
write 2-51, 2-108, 2-124, 2-165

Mouse, enabling 2-95
MRRM

videodisc 9-1
MS-DOS

charset file name conventions
246

interrupts 2-41
Multiple libraries 7-4

netinit 11-4
next 2-14, 2-131, 2-142, 2-167-168,

2-250, 6-6
nextl 2-167
no 2-136, 2-169, 2-174, 2-177
Noise maker 2-16
Non-executable command 1~3
noword 2-170, 2-176
Null modem 8-2

obtain 2-171-173, 7-2, 74, 7-7, 7-8
octal 2-238

constants 2-30
offer 2-172-173, 7-2, 7-3, 74, 7-6,

7 -8 ,I -I)
(all) 2-174

ok 2-146, 2-169, 2-174
okword 2-170, 2-175
0nritted arguquents 6-3
Optional words 2-4
or 2~177

Sors operator 2-34

I-9

Micro PLATO Author Language Reference Manual

or, continued
Suhions operator 2-38

Order of evaluation of arguments
6-6

outloop 2-163, 2-178-179, 2-202
Output

serial charmel 8-1
Output arguments 6-2

pack 2-152, 2-180-181
paint 2-182
Palettes

complementary colors on fixed
palette displays 2-58

defined 2-50
fixed 2-50
palette numbers 2-54
PPI.S Professional workstation

2-50
programmable 2-50
setting by Color display- 2-52
setting directly 2-54

Parameters, passing 6-1
Partial flag 3-4
Partialled out code 34
Pass by address 6-11
Pass by value 6-8
pause 2-21, 2-95, 2-142-144,

2-153-154, 2~183-184, 4-11
interaction with -enable- 2-184

pixels 2-185-186
plot 2-187
Ports, serial 8-1
PPTS Professional Workstation

2-50
Precedence 2-32
press 2-188

stopl 2-188
press command 249, 2-188

I-10

printl 2-188
Printer 2-188
Private units 7-8
Pseudo commands 3-1
Punctuation 24, 2-242
putd 2-190-191

Radians 5-1
randp 2-192, 2-203, 2-235
randu 2-193
rat 2-194-195, 2-197, 2-212
ratnm 2-195, 2-197, 2-212
rbox 2-196
rcircle 2-197, 2-212
rdot 2-198-199, 2-212
rdraw 2-88, 2-198-199, 2-213,

2-240
Read-only mode

sysfile open 2-247
Read /write mode

sysfile open 2-247
receive 2-24, 2-142, 2-200, 4-11
record 4-34

use with -datain- 2-70
Reduced resolution 2-212
release 2-201, 2-204-206
reloop 2-163, 2-178-179, 2-202
remove 2-203, 2-208
Renaming

datasets 2-104
sysfile rename 2-249

reserve 2-201, 2-204-206
file 2-204-206
records 2-204

Reserved words 1-3, 4-1
zanscnt 4-2
zargs 4-3
zargsa 4-4
zbcolor 4-5

®

Index

Reserved words, continued
zbpalette 4-6
zbuttons 4-7
zchaLrheight 4-8
zcharwidth 4-8
zdock 4-9
zcorrm 4-10
zdata 4-11
zentire 4-12
zextra 4-13
zfcolor 4-14
zfiplen 4-15
zfpalette 4-16
zjcount 4-17
zjudged 4-18
zkey 4-19
zldone 4-23
zmode 4-24
znbuttons 4-25
znscreeus 4-26
zntries 4-27
zopcnt 4-28
zorder 4-29
zpalette 4-30
zplanes 4-31
zptrlx 4-32
zptrly 4-32
zptrx 4-33
zptry 4-33
zrecs 4-34
zrestart 4~35
zretum 4-35
zrouten 4-37
zscore 4-38
zscreen 4-39
zscrrecs 440
zspell 4-41
ztouchstatus 4-42
ztouchx 4-43
ztouchy 443

Reserved words, continued
ztstype 445
zttype 444
zwcount 446
zwherex 4-47
zwherey 4-47
zxpixels 4-48
zypixels 448

restart 2-206
restart q 2-206
restore 2-203, 2-208
Restrictions on library units 7-2
return 2-86, 2-87, 2-140, 2-149,

2-209-210, 6-9-10, 7-6
Return arguments 6-9
return command 2-209
rfill 2-211
Right shift 2-36
rorigin 2-194-196, 2-198-199,

2-211-212, 2-214
rotate 2-124, 2-194, 2-199, 2-213,

2-248
vertical 2-213

rvector 2-214
Rounding 2-29
Roundoff of small numbers 2-30
Routines library

obtaining the units 11-1
RS232 8-1
RS2321/0 8-1

somplib
corrm 11-11
dtoa 11-9
netinit 11-4
signoff 11-7
signon 11-5

scalex 2-112, 2-114, 2-116, 2-124,
2-128, 2-160, 2-215

I-11

Micro PLATO Author Language Reference MaLnual

scaley 2-112, 2-114, 2-116, 2-124,
2-128, 2-160, 2-215

score 2-216, 4-38
screen 2-212

clearing the palette 2-55
moveregion 2-19-220
restore 2-217-219, 2-253
restorepalette 2-221-222
save 2-217-218
saveregion 2-218-219
select 2-227-228
setup 2-55, 2-222-227, 2-253

Screen coordinates 2-9, 4-47
Screen prints 2-188
Scrmching 2-9
search 2-228
searchf 2-230
sendkey 2-232
Serial channel I/0 8-1
Serial channel programming 84
Serial port control 8-5
serial ports 2-21-23, 2-143, 2-264

enabling 2-95
set 2-233
setperm 2-192, 2-203, 2-235
Shared mode

sysfile open 2-247
Sharing units 7-1
Shift

arithmetic right 2-36
circular left 2-36

show 2-181, 2-236, 2-258, 2-260
embedded 2-236

showa 2-181, 2-237
showb 2-238
showh 2-238
showo 2-238
showt 2-239, 2-256
Sign extension 2-37
Signoff 11-7

I-12

Signon 11-5
sin 2-258
size 2-124, 2-194, 2-197, 2-199,

2-240, 2-248
bold 2-258

space 2-81
specs 2-241, 4-13, 441

noops 261
Spelhig 2-242, 441
Statement label 2-20, 2-89
stop 2-167, 2-243
String replacement 2-190
Synonyms 24
sysfile 2-204, 4-15

create 2-204
open 2-204

sysfile corrmand 2-244
file types 2-245
sysfile close 2-248
sysfile create 2-247
sysfile destroy 2-249
sysfile open 2-247
sysfile read 2-248
sysfile readb 2-251
sysfile rename 2-249
sysfile seek 2-250
sysfile whte 2-249

System functions 1-3, 5-2
zbdata 5-3
zk54
zlength 5-5
zvloc 5-6

System sectors 2-246
System variables 1-3, 4-1

tab command 2-248
tabset 2-246
text 2-248
text delimiter 2-6, 2-158

Index

I-13

textn 2-249
Time 11-17
Tiin8 4-9, 4-io
touch 2-5, 2-95
Touch areas

defining 2-156
Touch panel

enabling 2-95
Transparent color 2-52

definition 2-223
Trigonometric functions 5-1
Type conversion 6-8, 6-10

ult 2-78, 2-250, 5-5, 6-2, 64, 6-8,
6-10

unit arguments 2-250, 6-1
Uhit libraries 2-171, 2-173, 7-1

1irfuts 7-2
multiple 74
setup 7-2
use of 7-2
with argument passing 7-2

Unit library units
accessing 7-2

Unresolved adaptable amay 6-12

Value type conversion 6-5
Variables 2-72
vaudio 9-8
vbar 2-130, 2-251
vbar command 2-130, 2-251
vdir 9-10
vdisp 9-16
vector 2-128, 2-252
vfirtsh 9-6
vgetaud 9-9
vgetdir 9-11
vgetdisp 9-17

vgetfrm 9-20
vgetnun 9-13
vgetspd 9-15
Video key color

initial screen color 2-225
Videodisc

commmand units 9-18
control units 9-7
defines needed 9-3
driver 9-1
library control units 94
MRRM 9-1
obtaining the units 9-2
vaudi.o 9-8
vdir 9-10
vdisp 9-16
vfinish 9-6
vgetaud 9-9
vgetdir 9-11
vgetdisp 9-17
vgetfrm 9-20
vgetnun 9-13
vgetspd 9-15
vinit 9-5
vnun 9-12
vplay 9-21
vplayw 9-22
vsetfrm 9-19
vspeed 9-14
vstart 9-23
vstop 9-24
vwait 9-25

vinit 9-5
vnun 9-12
vplay 9-21
vplayw 9-22
vsetfrm 9-19
vspeed 9-14
vstart 9-23
vstop 9-24

Micro PLATO Author Language Reference Manual

owait 9-25

wherex 2-199
wherey 2-199
widow 2-253, 2-254
write 2-126, 2-127, 2-165, 2-181,

2-255, 2-256, 2-258, 2-259,
3-2, 447, 5-6

blanks before SS comments 3-2
whtec 2-187, 2-255, 2-258, 2-259
wrong 2~4, 2-8, 2-146, 2-177, 2-259,

2-261
wrongc 2-6, 2-262
wrongv 2-3, 2-242, 2-263

xin 2-24, 2-26, 2-96, 2-143, 2-264,
2-266, 4-19, 84

xlnit 2-21-24, 2-200, 2-265, 4-11,
5-3

Xor
Sdiffs operator 2-38
mode complement 2-58

xout 2-24, 2-26, 2-98, 2-143, 2-264,
2-266, 8-4, 8-7

zanscnt 2-177, 4-2
zargs 2-209, 4-3, 6-3, 64
zargsa 44, 6-12
zbcolor 2-51, 2-54, 2-56, 4-5
zbdata 2-22-23, 5-3
zbdata system function 5-3
zblack 2-52
zblue 2-52
zbpalette 2-51, 2-54, 2-56, 4-6
zbuttons 4-7
zcharheight 4-8
zcharwidth 4-8
zclock 4-9-10

I-14

zcorrm 4-10
zcount 4-17
zeyan 2-52
zdata 2-142, 2-200, 4-11, 5-3
zentire 4-12
zero 2-152, 2-267, 2-268
zextra 4-13
zfcolor 2-54, 2-56, 4-14
zfiplen 4-15

defining length of FIP 2-244
zfpalette 2-52, 2-55, 2-57, 4-16
zgreen 2-52
zjcount 2-7, 4-17
zjudged 2-135-136, 2-146-147,

4-18
zk 1-3, 2-188, 4-19, 5-4

(timeup) 2-184
zkey 2-49, 2-118, 2-142,

2-155-156, 2-183, 4-18, 5-4
zlbuttons 4-22
zldone 2-161, 4-23
zlength 5-5, 6-12, 6-13
zmagent 2-52
zmode 2-165-166, 4-24
znbuttons 4-25
znscreens 2-227, 4-26

set by -screen setup- 2-224
zntries 4-27
zopcnt 4-28
zorder 4-29
zpalette 4-30

use with -screen setup- 2-222
zplanes 4-31
zptrlx 2-156-157, 4-32

use with -keytype- 2-156
zptrly 2-156-157, 4-32

use with -keytype- 2-156
zptrx 4-33
zptry 4-33
zrecs 4-34

Index,|.

I-15 I

zred 2-52
zrestart 4-35
zretum 1-3, 2-22-23, 2-71, 2-82,

2-85, 2-105, 2-148, 2-152,
2-182, 2-190-191, 2-201,
2-205+206, 2-249, 2-254,
4-35, 8-6

zrouten 4-37
zscore 2-216, 4-38
zscreen 2-224, 4-39

set by rscreen select- 2-227
zscrrecs 2-218, 440
zspell 441
ztouchstatus 4-42
ztouchx 4-43
ztouchy 443
ztstype 445
zttype 444
zvloc 5-6
zwcount 446
zwherex 2-9, 2-19, 2-92-93, 2-100,

2-108, 2-112, 2-114, 2-182,
2-195-197, 2-211, 2-214,
2-248, 2-252, 2-253, 2-255,
4-47

zwherey 2-19, 2-92-93, 2-100,
2-108, 2-112, 2-114, 2-182,
2-195-197, 2-211, 2-214,
2-248, 2-252, 2-253, 2-255,
4-7

zwhite 2-52
zyellow 2-52
zxpixels 4-48
zypixels 448

®

COMMENT SHEET

Manual Title: Micro PLATO Author Language Reference Manual
Publication Number: 97602372 Revision: A

Street Address:

City:

This fom is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of this manual.
Please indicate any elTors, suggested additions or deletions, or general comments below ®lease include page numbers of
references).

I Pleasereply I Noreply necessary

No rosTAGE RECEssARy IF MAILED IN u.s.A.
Fold on dotted lines and staple.

FOLD

BUSINESS REPLY MAIL
FIRSTCLAss pERMrr NUMBER 824i MINNEApoLls, nIN

POSTAGE WIll BE PAID 8¥

CONTROL DATA CORPORATION
PLATO Training and Education, BLCEI M
8800 Queen Avenue South
Bloomington, MN 55431

NO POSTAGE
NEassARy
n= MAH.ED IN
"UNITED

STATES

I

I

i--______________________________________I
FroLD

®

