2024/05/10 07:38 1/16 Hercules (Hyperion)

Hercules (Hyperion)

The emulator needed to run IBM mainframe bits is called “Hercules” and has gone through a LOT of
evolution through the many years of its existence.

The primary maintainer of the current version is David Trout (a.k.a. “Fish”) of SoftDev Labs.

His code is excellent and he maintains the current version of the emulator on Github under the SDL-
Hercules-390 project.

David describes the build process on the SDL web page Hercules Build Instructions but as easy as it
looks, it's not for all the reasons described here. I've annotated his work for clarity (and reality) of
what it takes to get this built properly under Windows - and to be clear, the complexity is in getting
the LIBRARIES working properly since his instructions point to builds of utility libraries that are over 10
years old.

Because we're not concerned with the older Visual Studio implementations, I'm only concerned with
my build environment VS2022.

Also - because the use of the IDE actually gets in the way of a fast build - I am limiting my remediation
instructions to the command prompt makefile.bat build.

SPECIAL NOTE: The build of Hercules requires WIN32.MAK which is a deprecated, but available
feature in VS2022

(for the original Visual Studio 2008 instructions, click here which will take you to the SoftDevLabs web
site.)

Hercules (Hyperion) Windows Build Instructions

(Visual Studio 2022)

Introduction
EVERYTHING in this document assumes you are running Windows 10 or Windows 11

This document provides instructions on how to build the Windows “MSVC” version of SDL Hercules 4.x
Hyperion. It parallels David Trout's version of the document but points out the “reality” of what is
needed to setup for an updated build of Hercules.

SDL did a great job of constructing the build process and fully utilizing the MSBUILD machinery - it's
textbook ... The challenges were in doing a proper complete build without the use of libraries which

Wizard of Odd - https://codex.sjzoppi.com/

https://en.wikipedia.org/wiki/Hercules_(emulator)
https://github.com/SDL-Hercules-390/hyperion.git
https://github.com/SDL-Hercules-390/hyperion.git
http://www.softdevlabs.com/hercules-vs2015-build.html
http://www.softdevlabs.com/hercules-msvc-build.html

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

he provided.

Those libraries were built in 2008 and because | don't want and don't have the sources for any
libraries that old (I use the same library builds across all projects), the fun starts when it comes time
to update the dependent libraries (as of this writing):

Dependencies

Significant functionality is provided by these three optional libraries. But the majority of the features |
will require depend upon them... so for this process, they are required.

e ZLIB (version 1.2.11) is a very lightweight and full-featured compression library created by Greg
Roelofs and maintained by Mark Adler

e PCRE FTP Perl Compatible Regular Expressions is a very sophisticated regular expression
library. PCRE support is required in order to build the Hercules Automated Operator
functionality. The PCRE library is a set of functions that implement regular expression pattern
matching using the same syntax and semantics as Perl 5.

There are two major versions of the PCRE library:

o The current version, PCRE2, first released in 2015, is now at version 10.35

o The older, but still widely deployed PCRE library, originally released in 1997, is at version
8.44. Its APl and feature set are stable—future releases will be for bugfixes only. Any new
features will be added to PCRE2, and not to the PCRE 8.x series. The current version is
8.44 This build example uses PCRE 8.44.

e BZIP2 The bzip2 file compression program was developed by Julian Seward and launched on the
18th of July in 1996. It has remained an open source program, available to all for free, for over
twenty two years now. The last stable release was seven years ago. The version 1.0.6 was
released on the 20th of September in 2010. bzip2 compression program is based on
Burrows-Wheeler algorithm. The current version is 1.0.6.

THE PCRE MODULE: creates complexity in revising the build because SDL's instruction conveniently
include links to binaries which are very old and refer to the UNIX names of pcre3. (lib|dl1l)
which is confusing to anyone trying to build the libraries today. More on this later ...

To build the Windows MSVC version of Hercules you need to first download and install Microsoft's free
(Free, fully-featured IDE for students, open-source and individual developers) Visual Studio
Community 2019 product.

To build the DEPENDENCIES you will need to Download and Install CMAKE.

Summary of Steps Involved

The overall setup of the build environment indicated above is straightforward but incomlete. SDL
indicates the 5 steps necessary for Hercules and assumes that you use their pre-built libraries. Before
doing anything - it's important to have a proper build structure ready.

Choose your build location and GIT/Clone the working directories:

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

https://zlib.net/
ftp://ftp.pcre.org/pub/pcre/pcre-8.44.zip
https://www.pcre.org/
ftp://ftp.pcre.org/pub/pcre/
ftp://ftp.pcre.org/pub/pcre/pcre2-10.35.zip
ftp://ftp.pcre.org/pub/pcre/pcre-8.44.zip
http://www.bzip.org/
https://sourceforge.net/projects/bzip2/files/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://cmake.org/download/

2024/05/10 07:38 3/16 Hercules (Hyperion)

git clone https://github.com/SDL-Hercules-390/hyperion.git

The resulting development tree (after following all of the subsequent steps) will look like this:

User Terminal

+---autoconf +---crypto | +---include | \---lib +---decNumber | +---include | \---lib +---html | +---images
| \---include +---m4 +---man +---msvc.* [SDL Old Library Build Outputs] +---msvc.makefile.includes
[SDL Original Makefile Includes] +---msvc.makefile.sz.includes ["Current" Library Makefile Includes] +-
--msvc.sz.* ["Current” Library build outputs] +---readme | \---images +---scripts +---SoftFloat | +---doc
| +---include | \---lib +---telnet | +---include | \---lib +---tests +---util \---winbuild <-- It is highly
recommended that you use this. | It is the default, and makes the build process | less complex to
diagnose and maintain. | +---bzip2 [SDL Libraries] | +---Debug | \---x64 | \---Debug +---bzip2.sz
["Current" Libraries] | +---Debug | +---include | \---x64 | \---Debug +---pcre [SDL Libraries] | +---bin | +-
--include | +---lib | \---x64 | +---bin | +---include | \---lib +---pcre.sz ["Current" Libraries] | +---bin | +---
include | +---lib | \---x64 | +---bin | +---include | \---lib +---zlib [SDL Libraries] | +---Debug | | +---include
| | \---lib | +---include | +---lib | \---x64 | +---Debug | | +---include | | \---lib | +---include | \---lib \---zlib.sz
["Current" Libraries] +---Debug | +---include | \---lib +---include +---lib \---x64 +---Debug | +---include |
\---lib +---include \---lib

Because we are building not only Hercules, but the dependencies as well the more precise required
steps are:

1. Download and install Visual Studio 2022.
2. Define the INCLUDE and VS170COMNTOOLS environment variables, and fix Visual Studio's
“Default Property Sheets”.
3. Download/UnZip/Position the following pre-built libraries from SDL so the original build
functionality can be adequately tested using the defaults:
1. VC2008/SDL ZLIB
2. VC2008/SDL BZIP2
3. VC2008/SDL PCRE

If you intend to build the “Current Libraries” - these additional steps will be required:

e Copy the folder structure for all three libraries (we assume the defaults of winbuild noted
above)
e Copy the makefile structure and give it a proper identifier (we are using sz in this context)

User Terminal

:: Change to the directory root of the GIT cloned repository CD [hyperion_root] :: Copy the STRUCTURE
of the three libraries XCOPY ".\winbuild\bzip2" ".\winbuild\bzip2.sz" /T /E XCOPY "\winbuild\pcre"
"\winbuild\pcre.sz" /T /E XCOPY ".\winbuild\zlib" "\winbuild\zlib.sz" /T /E :: Clone the MAKEFILE
structures XCOPY ".\makefile.msvc" ".\makefile.sz.msvc" XCOPY ".\makefile-dlimod.msvc" ".\makefile-
dlimod.sz.msvc" :: EDIT the Cloned MSVC makefiles to reflect the parallel structure NOTEPAD

" \makefile.sz.msvc" > Replace this line: linclude makefile-dllmod.msvc > With this line: linclude
makefile-dlimod.sz.msvc > Save NOTEPAD ".\makefile-dlimod.sz.msvc" > Replace this line: INCDIR =
msvc.makefile.includes > With this line: INCDIR = msvc.makefile.sz.includes > Save :: CLONE the
original makefiles XCOPY ".\msvc.makefile.includes*.*" ".\msvc.makefile.sz.includes*.*"

If you decide to locate those packages OUTSIDE of the build tree, you may indicate their proper

Wizard of Odd - https://codex.sjzoppi.com/

https://github.com/SDL-Hercules-390/hyperion.git
https://www.visualstudio.com/downloads/

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

location through the use of environment variables:

e SET ZLIB DIR=<UnQuotedDirectoryLocation>
e SET BZIP2 DIR=<UnQuotedDirectoryLocation>
e SET PCRE_DIR=<UnQuotedDirectoryLocation>

It is important to note that the subordinate structures must match the hierarchy indicated above.

Detailed Activity Steps
1. Download and Install Visual Studio

Click the download button for the “Community” edition from the Visual Studio download web page
using the above link to download a small installer stub. Run the installer and select which components
you wish to install, and then let the installer install your selected components.

The install takes quite a while to finish, so get yourself a cup of coffee while you wait.

IMPORTANT!

You must select the “C++ Windows XP Support for VS 2017 (v141) tools [Deprecated]” option!

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

2024/05/10 07:38 5/16 Hercules (Hyperion)

Madifying — Visual Stedio Community 2019 — 167.2

Workloads Individual companents Language packs Installation locations
Installation details

Fearch components (Cirl+Q))3'| 2 AN LR T

MuGet package manager > Desktop development with C++
v Individual components

MutGet targets and build tasks
PreEmptive Protection - Dotfuscator
Text Template Transformation

compilers, build tools, ﬂd runtimes

MET Compiler Platform 50K

= and Visual Basic Roshyn compilers

T+ 2018 Redistributable MSMs

C++ 2018 Redistributable Uipdate
C++ Clang Compiler for Windows [10.0.0)
C++ Clang-cl for v142 build tools (264,85

MuGet package manager

MET Framework 4.6.1 tangeting pack
= and Visual Basic Roshyn compilers
C# and Visual Basic

Contzmer development tools

MET Framewark 4.7.2 targeting pack
Javasoript and TypeScript language sup
Jawasaript diagnostics

RSBl

Text Template Transformation

M Razor Language Services

C++ CMake tools for Windaws 5 EXpless
E S0L ADAL runtirne

B =0L Server Express 2016 LocalDE

C++ Modules for vid2 build tooks (xf4/x86 = gxperimental)

] Connectily and publishing toolks
CLR data types for SOL Server
. B S0L Server ODBC Driver
C++/CU suppart for w142 build focls (14.20) Ml =0 Server Commarnd Lire Utilities

C++CU support for vI42 build fools [14.217) NET Framéwark 4.5.2 targeting pack
C4 40U support for vid42 build tools (14.22) ' ewark 4.5 targediny
C++0U supgart far vi42 build toals (14.23) S0L Server Data Tools
C++0U 5upcnrrfnr vi42 build tools [14.24) ﬂ Diata sounces for SOL Server support
(T4 +,/CU suport for vi42 build tools [14.25) ASP.MET and web development tools
o4 /CL support for w142 build tools (14.26) 8 n
Fl Advanced ASP.MET features
E ‘Web Deplay
Live Share

ET Cone 2.1 Runtime (LTS)

C++0U support far vi42 build tools (14.27)
ncrediBuild - Build Acceleration
Mkl C++ ATL for latest vi42 build tooks (x86 & w4
MSVE w140 - VS 2015 Lo+ build toals (14000 C++ MFC for latest w142 build tools (xBE& & xiy)
BMSVC w141 - WS 2017 C++ ARM build tools (v14.18) Windows Universal CRT SDK
MEVC w141 - VS 2017 L=+ ARM Spectre-mitigated libs (v14.18) GitHub Extension for Visual Studio
MSVC v141 - VS 2017 C++ ARMES build tools (¥14.16) Git for Windows
MESWC vid1 - VS 2017 C++ ARMES Spectre-mitigated libs (vid16) Class Designar
BASYC w4l - vE 2017 C++ xfd/uBd build tools (v14,18) C++ 2019 Redistributable M5hs
MGV w141 - V5 2017 C++ x54/x85 Spectre-mitigated libs (w1415 E] ASR.MET MWC 4
T e AT T o (T e i C++ Windows XP Support for vs 20717 (v141) tn
Location
ChProgram Files (xBEf\Microsoft Visual Studic\, 2015 Coammunity
Total space réquined DEB

By continuing, you agres o the lere for the Visusl Studio scition you selectec. We also offer the abilty ta doweload other software with Visual Shudio. This software ; :)
iz licersed saparstely, s sat out in the 3nd Party Motices or in its sccompanying license, By continuing, you also sgres to thoss liosrses: install whila downloading = Madify

Once Visual Studio is installed, you will need to do make important configuration changes:

1. You need to manually define very important environment variables

2. Fix Visual Studio's “Default Property Sheets” to add the INCLUDE directories specifying the
location of the win32.mak file installed by the above installation option. This will be more
clearly explained in the next step.

2. Define Environment Variables and Fix Property Sheets

INCLUDE

The INCLUDE environment variable must be defined because it identifies the location of an additional
list of compiler search directories. This must indicate the directory where the “win32.mak” file was
installed. (The “Windows XP support” install option is what provided the “win32.mak”.) This directory
varies depending on the version of Visual Studio installed and where it was installed, but for most
people it will be:

Wizard of Odd - https://codex.sjzoppi.com/

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Include

Lzervanahbles for

Vanable h Value ~

C:\Program Files (x86)\Microsoft SDKs\Windows\v7. 1A nclude

MNew... Edlit... Delete

VSnnnCOMNTOOLS

The VSnnnCOMNTOOLS environment variable must also be defined (where 'nnn' is the internal version
number of Visual Studio)

e '140' for Visual Studio 2015
¢ '150' for Visual Studio 2017
¢ '160' for Visual Studio 2019
¢ '170' for Visual Studio 2022

In earlier versions of Visual Studio the installer automatically defined this environment variable for

you, but in later versions of Visual Studio the installer no longer provides this. Because we require this
variable for the automatic/batch build process, it will need to be defined.

Lservanables for _

Varizhle Velue Lr e

W5180COMNTOOLS CA\Program Files (x26)\Microsoft Visual Studic’.2019 Community Commeon T Tools

Mew... Edit... Delete

This value identifies the location of the Visual Studio “Common Tools” directory. These tools enable
the build routine makefile.bat to locate the necessary configuration files which initialize Visual
Studio's build environment.

For most people this directory will be:

C:\Program Files (x86)\Microsoft Visual Studio\yyyy\Community\Common7\Tools

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

2024/05/10 07:38 7/16 Hercules (Hyperion)

For Visual Studio 2022, the directory is most likely to be:
C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools

where 'yyyy' is of course the version of Visual Studio (“2015”, “2017”, “2019”, “2022").

Default Property Sheets
NOTE: This task must be done in ELEVATED mode because it modifies installed Program files.

Finally, we must modify Visual Studio's “Default Property Sheets”; one for 32-bit and another for 64-
bit.

These property sheets contain the defaults which are used by MSBUILD and tell Visual Studio how to
initialize its various configuration values. Visual Studio does not (by default) include directories
identified by the INCLUDE environment variable. These modification enable the capability.

The Default Installation contains the following toolset.props property files:

e C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v150\Platforms\Win32\PlatformToolsets\v141\Too
Iset.props

e C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v150\Platforms\Win32\PlatformToolsets\v141 xp\
Toolset.props

e C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v150\Platforms\x64\PlatformToolsets\v141\Toolse
t.props

e C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v150\Platforms\x64\PlatformToolsets\v141 xp\To
olset.props

e C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v160\Platforms\ARM\PlatformToolsets\v142\Tools
et.props

e C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v160\Platforms\Win32\PlatformToolsets\v142\Too
Iset.props

e CC:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v160\Platforms\x64\PlatformToolsets\v142\Toolse
t.props

If you have other toolchains installed - you may need to locate them:

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\ARM\PlatformToolsets\v140\Toolset.props
e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\Win32\PlatformToolsets\v140\Toolset.props
e C:\Program Files

Wizard of Odd - https://codex.sjzoppi.com/

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\Win32\PlatformToolsets\v140 xp\Toolset.prop
S

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\x64\PlatformToolsets\v140\Toolset.props

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\x64\PlatformToolsets\v140 xp\Toolset.props

We are only concerned with these three:

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\ARM\PlatformToolsets\v140\Toolset.props

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\Win32\PlatformToolsets\v140\Toolset.props

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\x64\PlatformToolsets\v140\Toolset.props

Backup/rename the originals to:

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\ARM\PlatformToolsets\v140\Toolset.props.origi
nal

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\Win32\PlatformToolsets\v140\Toolset.props.ori
ginal

e C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\v140\Platforms\x64\PlatformToolsets\v140\Toolset.props.origi
nal

Then modify them as illustrated here:

th_ARM) : 5 (WindowsSDF_ExscutablePath) r 5 (V5_Exscut:

ws5DK IncludePath) r</IncludePath>

Fath) ' == "'"">5(VC Executablefath_ ABRM) ;3 (WindowsSDE_Executablesiath) 7 5 (VS _Execu

' omm PR E (VO IncludePath) ;S (HindowsSDE IncludePath) : 5 (INCLUDE) ; </IncludePath>
tomm B Re = RRM

FURL Ve I M) S (F ABRM] ;S (HETFXEitsDir) Lib'

NOTE: The “INCLUDE” environment variable we defined earlier above is very important in that it
defines the location where the “win32.mak” file lives which Hercules needs to initialize its build
settings. We place it in its own environment variable because the “INCLUDE” environment variable
is defined as a semicolon-delimited list of directories to be searched, and thus can contain other
additional directories to be searched. Each development toolchain behaves differently so we have
modified Visual Studio's default behavior in such a way that our build work can be more flexible.

As you can see, all we are doing is appending the “$(INCLUDE)" directories to the end of Visual
Studio's default search directories. This enables Visual Studio to locate the critical “win32.mak” file
when the build procedure asks for it.

Once you have Visual Studio installed and have defined the two environment variables and fixed the

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

2024/05/10 07:38 9/16 Hercules (Hyperion)

Property Sheets, then you are finished with the Visual Studio installation portion of the setup.

SPECIAL INSTRUCTIONS FOR WINDOWS 10 and 11:

Before your newly defined environment variables can take effect, you will need to first logoff and
then log back on! Earlier versions of Windows are smart enough to dynamically update the
environment immediately after being modified, but Windows 10 is different! You have to logoff and
logon again (or reboot) before the new environment variables will take effect!

3. Setting up ZLIB Support

ZLIB is a compression algorithm written by Jean Loup Gailly and Mark Adler and may be used in the
Hercules project pursuant to the ZLIB License (a copy of which may be seen at
http://www.zlib.net/zlib_license.html).

In source form, the Hercules project does not contain any ZLIB source code.

In binary form however, the Hercules project may include an unmodified version of the ZLIB runtime
DLL in addition to its own distribution binaries.

The 'ZLIB_DIR' environment variable defines the location of where the required files are for building a
version of Hercules that supports ZLIB compression. The makefile.bat and related MSBuild files
used by the Hercules build process test whether this environment variable is defined as an indicator
to build ZLIB compression support into Hercules.

If 'ZLIB_DIR' is undefined when you invoke the makefile the MSBuild functionality attempts to find
the required files in a predefined default directory winbuild. If the MSBuild functionality cannot find
them, then ZLIB support will not be generated. Otherwise 'ZLIB_DIR' must point to a valid directory
where the ZLIB package is installed and that directory MUST have the following structure:

General User
HYPERION\WINBUILD\ZLIB +---Debug | +---include | \---lib +---include +---lib \---x64 +---Debug | +---
include | \---lib +---include \---lib

ZLIB DIR must contain the top path of the ZLIB directory.

When building a 64-bit (x64) version of Hercules the above 'x64' subdirectories are automatically
searched. As long as the above directory structure is observed then Hercules ZLIB functionality will be
included.

The SDL-provided Library distribution expected within this structure is:

General User

HYPERION\WINBUILD\ZLIB | zlib1.dll | zlibl.pdb | +---Debug | | zlibl.dll | | zlibl.pdb | | | +---include | |
zconf.h | | zlib.h | | | \---lib | zdILlib | +---include | zconf.h | zlib.h | +---lib | zdll.lib | \---x64 | zlib1.dIl |
zlibl.pdb | +---Debug | | zlibl.dll | | zlibl.pdb | | | +---include | | zconf.h | | zlib.h | | | \---lib | zdIl.lib | +--
-include | zconf.h | zlib.h | \---lib zdIl.lib

Wizard of Odd - https://codex.sjzoppi.com/

http://www.zlib.net
http://www.zlib.net/zlib_license.html

Last update: 2022/04/18 19:18

ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

3.A Setting up ZLIB "Current Library" Support

If your build requires the “Current Version” libraries, the resulting hierarchy will be substantially
different than the one required for Hyperion/Hercules. It is for this reason that you should BUILD the
libraries separately, and then move them into place using the established hierarchy indicated above.

For ZLIB, the required hierarchy using ZLIB's present-day build mechanism on windows requires that
you copy the files from their build directory structure into the following hierarchy:

General User

HYPERION\WINBUILD\ZLIB.SZ | zlib.dll | zlib.pdb | zlibstatic.lib | +---Debug | | zlibd.dll | | zlibd.pdb | | |

+---include | | zconf.h | | zlib.h | | | \---lib | zlibd.lib | zlibstaticd.lib | +---include | zconf.h | zlib.h | +---lib
| zlib.lib | zlibstatic.lib | \---x64 | zlib.dll | zlib.pdb | +---Debug | | zlibd.dll | | zlibd.pdb | | | +---include | |
zconf.h | | zlib.h | | | \---lib | zlibd.lib | zlibstaticd.lib | +---include | zconf.h | zlib.h | \---lib zlib.dll zlib.exp

zlib.ilk zlib.lib zlib.pdb zlibstatic.lib

and you will then need to modify the MSVC files accordingly:

hyperion\msvc.makefile.sz.includes\ZLIB DIR.msvc

26 1- ILIB_DIR = E:‘\MyProjectsizlib and bzipl dllshzlik latestizliblil-4ll

274 ZLIB_DIR = Cr'winbuildhi=zlibl\wind2 32
ZE 4
:9

FHOEF 'L_E DIR
34 ; T s

ase defauls valus, if it exists,

2§ ZLIE | DIR d.lfnuit- to winbuild\zlib relative to current directory
X IIF "E(SPU T == TLIEET Lk nt:ﬂ'tusnwnamﬁ\nnu 2y
34+ Avold breaking existing builds, use wipnd2 32 subdir if it exists

32 ZLIE DIR = winbuildizlibywini2 32
35 JELSEIF "5 (CEU)™ == "i386" &6 EXIST(wiobuildhzlib)

37T ZLIE DIR = winbuild\zlib

3T IELSEIF "5(CPU™ == "AMDEQ" i EXIST (Winbulld\slim\HEd)
‘-‘i‘:I:.J:B DIF. = winbuildizlib\acéd

41 [ERECR ZLIE :'= '-'I:'_:E- ::r-
©I IELSETF |EXIST (™5 [ZLIB_DIR)A1ikizd!
<% |ERROR ZLIB_DIR "5 [ZLIB_DIR)A1likhz
=4 |ELSEIF |EXIST(=$(ZLIE_DIR)%zlibl.dil=)

5 LERRGOR ZLIB_DIR S I2LIB_DIR)\2l1ikl.dil™ doss not suist, Check ILIB_DIR

&& |ERDIF

hyperion\msvc.makefile.sz.includes\ZLIB FLAGS.msvc

11 | IFOEF ZLIE_DIR
.2 ZLIB_DLL = §{ZLIE_DIR)%zlibi.dil
L1 ZLIB_LIB = sqzun DIR) -"llh."z:l__ lib

hyperion\msvc.makefile.sz.includes\ZLIB RULES.msvc

dess not sxist. Check ZLIB _DIR

ib® does not exist. Check ZLIB_DIR

254 -
ILIB_DIR = E:‘MyFrojects'zlib.sz and baipl dlls‘zlib latestizlibill-dll
zr.ra DIR = Ciwinbuildizlib.sziwini2 32

29

30 !IFNDEF ZLIB DIR

31 # Undefined: use defa: value, if it exists.

3z # ZILIB DIR dniln.'l.t- to i:.nh'uild\zlib sz relative to current directory
FRILF TECPU) M == UL38€T LL EXIST (winbuild\=lib.s 32 32y

34 # Avoid breaking existing builds, use wind2 32 subdir if it sxists

33 ZLIE_DIB = winbuildhzlib.azhwin32_32

3¢ IELSEIF "S{CEV)" == "i306" &4 EXIST (winkuild\zlib.sz)

37T EZLIE DIR = winbuildhzlib.sz

T IELSEIF "SACRU) " == “ANDE4™ L& EXISTIMinBuild\slib.ss\REd)

33 ZLIB_DIR = winbuildizlib.sz'xéd

£ I

€1 IERROR ZLIB_DIR "% (Z | h* does not exist., Check ZLIB_DIR
£Z !ELEEIF !EXIST ("5 (ZLIB DIR]\lib\zlitscatic.likb™]
¢3 JERROR ZLIB_DIR "5 (ZLIB_DIF)\likhzlibstatic.lib™ does not exist. Check ILIB_T
¢4 JELEEIF |EXIST("$ (ZLIB_DIR]\zlib.d11%)

£ IERROR ZLIB_DIR "5 (ILIM_DIR)\2lib.d411" doss not exish, Chesk ILIN_DIR

€6 IENDIF

11 !IFDEF ZILIB_DIR
12 ZLIB_DLL = §(ZLIB_DIR]%zlib._dll

https://codex.sjzoppi.com/

Printed on 2024/05/10 07:38

https://codex.sjzoppi.com/_media/ibm360-370:msvc.makefile.sz.includes.zlib_dir.msvc..png
https://codex.sjzoppi.com/_media/ibm360-370:msvc.makefile.sz.includes.zlib_flags.msvc..png
https://codex.sjzoppi.com/_media/ibm360-370:msvc.makefile.sz.includes.zlib_rules.msvc..png

2024/05/10 07:38 11/16 Hercules (Hyperion)

L3 §ix)zlibi.dll:

(Xl zlibl .41l

SiXizlib. 411

4. Setting up BZIP2 Support

BZIP2 is a freely available (open-source (BSD-style) license), patent free (as far as the author knows),
high-quality data compressor written by Julian R Seward. It typically compresses files to within 10% to
15% of the best available techniques (the PPM family of statistical compressors), whilst being around

twice as fast at compression and six times faster at decompression.

In source form, the Hercules project does not contain any BZIP2 source code.

In binary form however, the Hercules project may include an unmodified version of the BZIP2 runtime
DLL in addition to its own distribution binaries.

The 'BZIP2_DIR' environment variable defines the location of where the required files are for building
a version of Hercules that supports BZIP2 compression. The makefile.bat and related MSBuild files
used by the Hercules build process test whether this environment variable is defined as an indicator
to build BZIP2 compression support into Hercules.

If '‘BZIP2_DIR' is undefined when you invoke the makefile the MSBuild functionality attempts to find
the required files in a predefined default directory winbuild. If the MSBuild functionality cannot find
them, then BZIP2 support will not be generated. Otherwise 'BZIP2_DIR' must point to a valid directory
where the BZIP2 package is installed and that directory MUST have the following structure:

General User
HYPERION\WINBUILD\BZIP2 +---Debug \---x64 \---Debug
ZLIB_DIR must contain the top path of the ZLIB directory.

When building a 64-bit (x64) version of Hercules the above 'x64' subdirectories are automatically
searched. As long as the above directory structure is observed then Hercules ZLIB functionality will be
included.

The SDL-provided Library distribution expected within this structure is:
General User

HYPERION\WINBUILD\BZIP2 | bzip2.org.url | bzlib.h | libbz2.dll | libbz2.lib | libbz2.pdb | +---Debug |
libbz2.dll | libbz2.lib | libbz2.pdb | \-~-x64 | bzlib.h | libbz2.dIl | libbz2.lib | libbz2.pdb | \---Debug

Wizard of Odd - https://codex.sjzoppi.com/

http://www.bzip.org
http://www.bzip.org/1.0.3/html/index.html

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

libbz2.dll libbz2.lib libbz2.pdb

4.A Setting up BZIP2 "Current Library" Support

If your build requires the “Current Version” libraries, the resulting hierarchy will be substantially
different than the one required for Hyperion/Hercules. It is for this reason that you should BUILD the
libraries separately, and then move them into place using the established hierarchy indicated above.

For ZLIB, the required hierarchy using ZLIB's present-day build mechanism on windows requires that
you copy the files from their build directory structure into the following hierarchy:

General User

HYPERION\WINBUILD\BZIP2.SZ | bzlib.h | libbz2.dll | libbz2.lib | libbz2.pdb | +---Debug | libbz2.dll |
libbz2.lib | libbz2.pdb | +---include | bzlib.h | \---x64 | bzlib.h | libbz2.dll | libbz2.lib | libbz2.pdb | \---
Debug libbz2.dll libbz2.lib libbz2.pdb

and you will then need to modify the MSVC files accordingly:

hyperion\msvc.makefile.sz.includes\BZIP2 DIR.msvc

_DIR defaults to winbulldibezip? relative ©o current directory

30 @ BET

ILIIF "SICFO] " == "i386&" && EXIET (winbuildibzipl)
12 BEIPZ_DIR = winbuildibzipd

19 IELFEIF "L|CPD) " == “RMDA4® L& EXIST (winbuildibzipdixdd)
4 BEIPI_DIR = winbuild\bzipd\xf4

10 % BEIEZ B defaultes to winbuildibzipd.sz relative to currsnt dirsciory
IIF "S|CPO)" == *iJ8E" 4& EXIST (winbuild\bzipl.ez)

1} @3IP2_DIR = winbuildi\bzipd.sz

13 iELsEIr "ICPO) ™ &= "RMDE4" L& EXIST (winbuildi\bsizd. ss'xEd)

I4BIIDY DIR = winbuild\bEipd sxhyued

5. Setting up PCRE Support

NOTE: the Perl-Compatible Regular Expressions library is needed only to support the Hercules
Automatic Operator (HAO) Facility. If you do not plan to ever use the Hercules Automatic Operator
facility, then you do not need to install PCRE support and may safely skip this step.

PCRE (Perl-Compatible Regular Expressions) is: “a set of functions that implement regular expression
pattern matching using the same syntax and semantics as Perl 5. PCRE has its own native API, as well
as a set of wrapper functions that correspond to the POSIX regular expression API. The PCRE library is
free, even for building commercial software.”

In source form, the Hercules project does not contain any PCRE source code.

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

https://codex.sjzoppi.com/_media/ibm360-370:msvc.makefile.sz.includes.bzip2_dir.msvc..png
http://gnuwin32.sourceforge.net/packages/pcre.htm

2024/05/10 07:38 13/16 Hercules (Hyperion)

In binary form however, the Hercules project may include an unmodified version of the PCRE runtime
DLL in addition to its own distribution binaries.

The 'PCRE_DIR' environment variable defines the location of where the required files are for building
a version of Hercules that supports PCRE compression. The makefile.bat and related MSBuild files
used by the Hercules build process test whether this environment variable is defined as an indicator
to build PCRE compression support into Hercules.

If 'PCRE_DIR' is undefined when you invoke the makefile the MSBuild functionality attempts to find
the required files in a predefined default directory winbuild. If the MSBuild functionality cannot find
them, then PCRE support will not be generated. Otherwise 'PCRE_DIR' must point to a valid directory
where the PCRE package is installed and that directory MUST have the following structure:

General User
HYPERION\WINBUILD\PCRE +---bin +---include +---lib \---x64 +---bin +---include \---lib

PCRE_DIR must contain the top path of the PCRE directory.

When building a 64-bit (x64) version of Hercules the above 'x64' subdirectories are automatically
searched. As long as the above directory structure is observed then Hercules PCRE functionality will
be included.

The SDL-provided Library distribution expected within this structure is:

General User

HYPERION\WINBUILD\PCRE +---bin | pcre3.dll | pcre3.pdb | pcreposix3.dll | pcreposix3.pdb | +---
include | pcre.h | pcreposix.h | +---lib | pcre.lib | pcreposix.lib | \---x64 +---bin | pcre3.dll | pcre3.pdb |
pcreposix3.dll | pcreposix3.pdb | +---include | pcre.h | pcreposix.h | \---lib pcre.lib pcreposix.lib

5.A Setting up PCRE "Current Library"” Support

If your build requires the “Current Version” libraries, the resulting hierarchy will be substantially
different than the one required for Hyperion/Hercules. It is for this reason that you should BUILD the
libraries separately, and then move them into place using the established hierarchy indicated above.

For PCRE, the required hierarchy using PCRE's present-day build mechanism on windows requires that
you copy the files from their build directory structure into the following hierarchy:

General User

HYPERION\WINBUILD\PCRE.SZ +---bin | pcre.dll | pcre.pdb | pcrel6.dll | pcrel6.pdb | pcre32.dll |
pcre32.pdb | pcrecpp.dll | pcrecpp.pdb | pcreposix.dll | pcreposix.pdb | +---include | pcre.h | pcrecpp.h
| pcreposix.h | +---lib | pcre.lib | pcrel6.lib | pcre32.lib | pcrecpp.lib | pcreposix.lib | \---x64 +---bin |
pcre.dll | pcre.pdb | pcrel6.dll | pcrel6.pdb | pcre32.dll | pcre32.pdb | pcrecpp.dll | pcrecpp.pdb |
pcreposix.dll | pcreposix.pdb | +---include | pcre.h | pcrecpp.h | pcreposix.h | \---lib pcre.lib pcrel6.lib
pcre32.lib pcrecpp.lib pcreposix.lib

and you will then need to modify the MSVC files accordingly:

hyperion\msvc.makefile.sz.includes\PCRE DIR.msvc

Wizard of Odd - https://codex.sjzoppi.com/

https://codex.sjzoppi.com/_media/ibm360-370:msvc.makefile.sz.includes.pcre_dir.msvc..png

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

IF fdddmamann b A AT A A R R R AR IS A R AR AR AR R AR AR AR A [AR R AR AR AR A AR E AR R RS TA AR R R TR R
2 2

e e - - -

4 ¥ [T) Topyright Rogec Bowlec, 200%8=200T7 4% [T) Copyright Rogec Bowlss, 2009=2007

B - - - BP - - - -

€4 S1di & ¥ Frdd

T T

&4 Handles suppozt for PORE {Fezl Compatible Pegulas Expressicoal, ¥ Handles suppost far BORD (Fezl Compatible Pegulas Exprsssiconi,

Bf for HEVS, nesded by RS [Hexcules Ahotomatic Operstork fscilisy FF for MEVS, nesded by HEG (Herculss Automatic Cperatork Sasilizy

=11] 1BE

P B R T i I L L L L L L L LT T T T
a3 i3

s - - - L - - -

24 # To snable TORE iDecl-Compatible Megular Expressionmd woppoct, Sicak 14 # To snable FORE iPecl-Compatible Megular Expressionsd wopport, Sicmb
15 ¢ download "12 and Gd-mit PORE for Windows™ from wwew. sirsesfr.co.ukspers 186 downlosd "12 and Gd-bit PORE for Windowe™ from wwd sirsesfr.co.ukSpors
L6 d rils name: hetp:S S alesacds . co.ukffilaapesalpece-B. 20 sip LEN rils mame: hitp:S S alraacds, afpezelpece-B. 30 sip

AT # Then crests & F diTw Ty called wWh FoU WAnT ITH Then Crests & permATALT dire called wh FoU WENC
A% 4 and melp pexe-6.20.elp Inte thae dicestory. Finally defice an A8 0 and mnelp peze-6.20.elp Inte that dicectory. Finally defize an

AR F snvircamsnt vasiabls #d "FCRE_DIR" poimting mo chat di TETY . iRF k ibls callsd "FCRE_DIR™ pointing mo chat dLrscioTy.
by - = = ol = = =

a:z iz

23 | IFNDEr FCRE_DIR

23 | ICHDEr TCPE_DIR
234 Undsfizad: uss defanlt Talus, if it sximte.

23§ UndeZized: use default valus, if ic sxists.
L
2
26
2T
5
L]

3
L v
33 |[ENDIF B3 | EMDIF
34 |ELEE 3 |ELEE

50 pefivaedr ude eNplioin ALrecTory OF FobALEecTOIy
€ ¥ unlespr "HONE™ iz specifisd o it domER"t sziE:.
3T IIF "5 IPE_DIRI™ == “NoME" FTIIF “CIPCRE_DIPI™ == “pomE"
T2 IUNDEF ORI _DIR 32 IUNDEF PORE_DIR

¥5 |ELEE 5 | ELEE

40 1IF TIICET|" == Ti3BET 40 1 IF TLICETI T me Ci3EET

4l |IF |EXIET 15 {MCRE_DIRKE 41 IIF |EXZETIF{MCRE_DIRb

42 IUNDEF PCRE_DIR 42 'UNDEF FORE_DIR

43 |EHDIF 43 | EHDIF

44 !ELSEIF "2 |CHUIT == “ABDE4" 44 |ELSEIF "5 |CFU1 T == “RMDE4"

FEF Delfirsedr use eMplioic ALrecTory OF saodirecTory
M ¥ unlscr "HONE™ iz specifisd o it dosEn"t sxiss.

45 |IF EXIET IS {WRE_DIRD \médi

A BCRE_DIR = & {FCRE_DIR) \xid

47 |EHDIF

A% |ELEEIF "8 |CRU1" =m "IRE®

A% |TF EXIET IS (FCRE_DIRY \iaddl
50 FCRE_DIR = 5 {FCRE_DIR)\iméd
Ei |EHDIF

2 |MpIr

E1 |EHDIF

E4 iEMDIF

e

AR |IF EXDET IS IFCRE_DIRS \miédi

A PCRE_DIR = §{FCRE_DIR)\xEd

47 |EHDIF

A% |ELESEIF *5(CPUI" =m FIREA®

A% | IF EXIET 15 (FCRE_DIRD \iaédl
50 PCRE_DIR = 5 {FCRE_DIR) ' Zaéd
ki |EHDIF

52 |MDIr

E1 |EHDIF

E4 iEMDIF

e

(6.A) Modify OUTPUT_DIRS

To ensure that MSBuild generates outputs to the proper isolated directories - the following
modifications MUST be made to the following file:

R T T L B e I L I L L
24 SUTFUT_DIRS .mave IHCLUDE sd By "makefils-dllmsd, meve”) L OUTEUT_DIRS .mave THINCLUDE &d By "maksfile-dllmed.mave™)

3d - - - - -= - - i -= -= - -- - -

4# () Copyright Roger Bowlar, ZO00S-2005 4 (C) Copyright Boger Bowler, 2005-2003

5§ sssmsssmsssssssssssssssssEEsEEssssSsEEEESESESSESEEEESEESSESSEEEEEESESEESEEE 5§ =sssssssssssssssssssssssssssssEEEEEEEESEE S S EEEEEEEEEEE S
€4 L4]

T# Define the build ocutput directories... 7# Define the build curpur directories...

Ed as

54 SET FREFIN=NONE to generate output directories named bin,obd,pdb,map,cod 4§ SET FREFIXK=NOHE %o generate ocutput directories pamed bin,obj,pdb,map,cod
10# (this is for nmake wersicn € which barfs if the command line is too longh 10# (this is for mmake wersiom & which barfs if the command line is too long)
114 Otherwiszs the sutpur directoriss are named: 11# Otherwise the cusput dirscrorises ars namsd:

124 124

2i# jmeve.[debug.lxmmer.bdn/okd/pdbimapiced 13f msve.sz.(debug. lxmsx.bin/ekdfpdbfmapiesd
49 144

158 # where zxxx is "dlilmod® (for 1384) or “AMDE4S, 15 # where xmxx is Sdllmod® (for i3068) or “AMDE4R,
16# (thiz naming comventicn i to aveld breakimg sxisting build procedures) 1E# (this naming comwvantiom is o avedd breaking existing build proceduras)

B LR T L b B R T P P T T R T T T PP e

i8
15 | IFDEF MODEEDS
20 DEBUG_FREFIN =

18
15 !IFOEF HODEBUG
20 DERUG_FREFIX =

21 |ELSE 21 1ELZE

22 DEBUGC_PREFLN = dabug. 22 DEBUG_PREFIX = dabug.

23 tE¥pIr FER) M

24 24

IS IIF ("5 ICEFMI T == "i3Z67) 25 1TF ("5{CPU)T == ~138ET)

26 ARCH_FREFIN = dllmod. 2E ARCH_FREFIXN = dllmed,

27 |ELSE 27 1ELEE

28 ARCH_PREFIN = 5(CPU) .- 28 RRCH_PREFIX = 5(CRU) .

25 |E¥DIF 28 1ENDIF

30 10

3LIIF ("3 (PREFIX)" == ~HOGME") || ("5 {FREFIX}= == "ncoma™} 3L IIF ["5{PREFIN]™ == "NOME=] || ("5(PREFIN}" = “nona")
32 FREFIX = 32 PREFIE =

3% |ELSE 33 1EL3E

34 PREFIX = msvc.§(DEBUG_PREFIX)SARCE_PREFIX} 34DREPIX = mevc.sz.5(DERUG_DREFIN)G (ARCH_PREFIN}
35 LE¥DIF 35 {ENDIF

3¢ 18

3T IIF ("5 (EXEDIR)" == ==] || ("5([0BJDIR)" == ==] || ("5(FDEDIR)" == ==] || ("5} 37 1IF (~5({EXEDIR)= == ") || (~5(OBJDIR}= == ") || [=5{PDBDIR}= == "") || (=54
38 EMEDIR = SPREFIKIBiR 38 EXEDIR = 5 (FREFIN|bin

35 OBJDIR = %(FREFIKbobj 18 CBIDIR = § (FREFIE) obj

40 COBDIR = &(FREFIX)pdb 40 FOBOIR = § (PREFIN) pab

4L MAFDIR = S(FREFIXimap 41 MAFDIR = 5 (FREFINImap

42 |ENDIF 42 |ENDIF

43 a3

44 | IFNDET ASSEMELY LISTINGS
48 1TYTEE AAMOTR
%

44 |IFHDEF ASSEMBLY_LISTINGS
48 ITNNEE ASMTTE -
< ¥

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

2024/05/10 07:38 15/16 Hercules (Hyperion)

Building Hercules using the Visual Studio "makefile.bat"

Once you have installed Microsoft's Visual Studio 2019 Community Edition and have finished setting
up the build environment, you can then easily build Hercules via the provided Visual Studio solution
and project files included as part of the Hercules source-code distribution.

General User

CD [hercules build directory] makefile.bat retail makefile.msvc 8 CLEAN makefile.bat retail-x64
makefile.msvc 8 CLEAN makefile.bat debug makefile.msvc 8 CLEAN makefile.bat debug-x64
makefile.msvc 8 CLEAN makefile.bat retail makefile.msvc 8 makefile.bat retail-x64 makefile.msvc 8
makefile.bat debug makefile.msvc 8 makefile.bat debug-x64 makefile.msvc 8 if you built the "Current
Libraries" and want to use those: makefile.bat retail makefile.sz.msvc 8 CLEAN makefile.bat retail-x64
makefile.sz.msvc 8 CLEAN makefile.bat debug makefile.sz.msvc 8 CLEAN makefile.bat debug-x64
makefile.sz.msvc 8 CLEAN makefile.bat retail makefile.sz.msvc 8 makefile.bat retail-x64
makefile.sz.msvc 8 makefile.bat debug makefile.sz.msvc 8 makefile.bat debug-x64 makefile.sz.msvc
8

That's it!

NOTE: When using the IDE, clicking the “Rebuild Solution” button in Visual Studio simply invokes
Hercules's “makefile.bat” script, which in turn invokes the nmake command for the make file called
makefile.msvc or makefile.sz.msvc (after calling a few helper batch scripts to first define the
Visual Studio build environment).

All of the actual building (compiling and linking) is controlled by the “makefile.msvc” make file
(which, as explained, is invoked automatically by Visual Studio when you click the “Rebuild
Solution” button).

General User

hyperion>makefile /? makefile.bat begun on Fri 08/28/2020 at 13:10:07.47 cmdline: makefile /?
makefile.bat(1) : error C9999 : Help information is as follows: makefile.bat Initializes the Windows
software development build envionment and invokes nmake to build the desired 32 or 64-bit version
of the Hercules emulator. Format: makefile.bat {build-type} {makefile-name} {num-cpu-engines} \ [-
asm] \ [-title "custom build title"] \ [-hga {directory}]\ [-extpkg {directory}]\ [-a|clean] \ [{nmake-
option}] Where: {build-type} The desired build configuration. Valid values are DEBUG / RETAIL for
building a 32-bit Hercules, or DEBUG-X64 / RETAIL-X64 to build a 64-bit version of Hercules targeting
(favoring) AMDG64 processors. DEBUG builds activate/enable UNOPTIMIZED debugging logic and are
thus VERY slow and not recommended for normal use. RETAIL builds on the other hand are highly
optimized and thus the recommended type for normal every day ("production") use. {makefile-name}
The name of our makefile: 'makefile.msvc' (or some other makefile name if you have a customized
one) {num-cpu-engines} The maximum number of emulated CPUs (NUMCPU=) you want this build of
Hercules to support: 1 to 64. -asm To generate assembly (.cod) listings. -title "xxx..." To define a
custom title for this build. -hga "directory" To define the Hercules Quality Assurance directory
containing your optional "hga.h" and/or "HQA.msvc" build settings override files. -extpkg "directory"
To define the base directory where the Hercules External Packages are installed. Hercules will use the
'include’ and 'lib' subdirectories of this directory to locate External Package header files and lib files
during the build process. If not specified the default is to use the header and lib files that come with
the Hercules repository. [-a|clean] Use '-a' to perform a full rebuild of all Hercules binaries, or 'clean’

Wizard of Odd - https://codex.sjzoppi.com/

Last update: 2022/04/18 19:18 ibm360-370:how-tos:winbuild_hercules https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

to delete all temporary work files from all work/output directories, including any/all previously built
binaries. If not specified then only those modules that need to be rebuilt are actually rebuilt, usually
resulting in much quicker build. However, when doing a 'RETAIL' build it is HIGHLY RECOMMENDED
that you always specify the '-a' option to ensure that a complete rebuild is done. [{nmake-option}]
Extra nmake option(s). (e.g. -k, -g, etc...) makefile.bat ended on Fri 08/28/2020 at 13:10:07.59, rc=1

From:
https://codex.sjzoppi.com/ - Wizard of Odd

Permanent link:
https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

Last update: 2022/04/18 19:18

https://codex.sjzoppi.com/ Printed on 2024/05/10 07:38

https://codex.sjzoppi.com/
https://codex.sjzoppi.com/ibm360-370:how-tos:winbuild_hercules

	Hercules (Hyperion)
	Hercules (Hyperion) Windows Build Instructions
	(Visual Studio 2022)
	Introduction
	Dependencies
	Summary of Steps Involved

	Detailed Activity Steps
	1. Download and Install Visual Studio
	2. Define Environment Variables and Fix Property Sheets
	INCLUDE
	VSnnnCOMNTOOLS
	Default Property Sheets

	3. Setting up ZLIB Support
	3.A Setting up ZLIB "Current Library" Support

	4. Setting up BZIP2 Support
	4.A Setting up BZIP2 "Current Library" Support

	5. Setting up PCRE Support
	5.A Setting up PCRE "Current Library" Support

	(6.A) Modify OUTPUT_DIRS

	Building Hercules using the Visual Studio ''makefile.bat''

