
 +---+
 | +---+ |
 | | | |
 | | | |
 | | | |
 | | | |
 | | WHAT MOTHER NEVER TOLD YOU | | WHAT MOTHER NEVER TOLD YOU
 | | | |
 | | ABOUT VM SERVICE | | ABOUT VM SERVICE
 | | | |
 | | | |
 | | | |
 | | | |
 | | A Tutorial | | A Tutorial
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | Melinda W. Varian | | Melinda W. Varian
 | | | |
 | | | |
 | | Princeton University | | Princeton University
 | | Computer Center | | Computer Center
 | | | |
 | | | |
 | | | |
 | | March, 1983 | | March, 1983
 | | | |
 | | | |
 | | | |
 | | | |
 | +---+ |
 +---+

 WHAT MOTHER NEVER TOLD YOU ABOUT VM SERVICE WHAT MOTHER NEVER TOLD YOU ABOUT VM SERVICE

 A Tutorial A Tutorial

 Melinda W. Varian

 Princeton University Computer Center
 87 Prospect Avenue
 Princeton, NJ 08544

 Introduction Introduction

 In talking with a number of new VM users over the past year, I have found
 that although they are often able to use VMSERV successfully to install the
 service from the VM PUTs (the preventive service tapes), they start getting
 into trouble when they must apply corrective service, even just taking the
 steps prescribed in the PUT error bucket. My impression from these
 conversations has been that the source of the problem is a lack of
 understanding of the basic VM service installation processes. These
 processes are not difficult to understand, but the VM education available
 to new users in recent years has unfortunately encouraged them to view
 service installation as "magic", as something which must be left in its
 black box. I have never been very happy having to use magic myself,
 especially unreliable magic. IBM's VM service magic falls into that class.

 I was very fortunate when I was a new user, four years ago, to be able to
 sit down with a very kind and knowledgeable lady who took me through the
 entire service installation process, explaining it step by step. So, what
 I am proposing to do here today is to go through the service installation
 process with you, using, as she did, only the most primitive of our service
 primitives, in the hope of giving you a firm understanding of the entire
 process. Once you understand what is really going on, then it is fine to
 stuff it back into a black box. Indeed, you will almost certainly want to
 automate substantial portions of the process, using either your own or
 IBM's EXECs. (As I go along, I will mention the higher-level tools that
 are available to be used in the various steps.)

 I will be presenting you with what I hope is a simple, coherent service
 strategy, down to the detail of disk layouts and file names. This strategy
 is a distillation of my own experience and the experience of a number of
 the VM old-timers I have talked to. It is, I hope, suitable to be picked
 up and used as it is by new installations. I'll go through the service
 process for CP first and later describe the differences in the service
 installation process for CMS. The important point here is that there are
 almost no differences. CMS service installation has a few more curlicues,
 but the philosophy and the mechanisms are the same. I will be using VM/SP
 Release 1 in my examples, but it is easy to extrapolate to the base version
 of VM or to BSEPP, SEPP, SP2, or HPO; the main differences are in the
 naming conventions. (There is an appendix in the handout which discusses
 the differences between installing service on SP and installing service on

 PAGE ii

 other levels of VM.) I will touch briefly on the subject of installing
 service on other source-based VM products, but, once you know how to
 maintain CMS, you will have no trouble with these products.

 I will not be discussing the installation of service for non-source-based
 VM products, such as the CMS compilers, because there is nothing I can tell
 you that would prepare you for doing that. Every new compiler tape is a
 new adventure for all of us; there are no guidelines. The best I can
 suggest is that VMSHARE, the network used by members of the SHARE VM Group,
 usually contains detailed instructions on how to fix up each new compiler
 tape within a couple of weeks of its appearance in the field.

 The older VM installations have evolved service procedures which are
 remarkably similar from site to site.* There are, of course, varying views
 on some of the steps in the service process. I will try to point these out
 as I go and explain the cause of the differences. You will see, too, that
 there are a few areas in which the old users disagree with IBM's service
 installation recommendations. I will try to explain those differences, as
 well. Most of what IBM tells you about VM service is sound, however, so
 you should be sure that you are familiar with the "PSGIM", the "Field
 Engineering Programming System General Information" manual, G229-2228, and
 with the "sysgen manual", the "VM/SP Planning and System Generation Guide",
 SC19-6201. The best introduction to VM service installation that I am
 aware of is a primer written by an IBM SE, Bob Benham, which has been
 published by the Washington Systems Center under the title, "VM/370
 Maintenance Made Simple", GG22-9277.

 * Although some of the more outrageous views expressed in this paper are
 strictly my own, the paper as a whole is the result of a community effort.
 I set out to collect and record the folklore of the VM community on the
 subject of service installation. (See VMSHARE MEMO MAINT.) I was touched
 and pleased by the generosity with which members of the community
 responded. I am indebted to many VMers for taking the time to describe
 their service installation techniques for me, especially Bruce Marshall
 (ADE). I also wish to thank Kirk Alexander (PU), John Alvord (AMD), Terry
 Baughman (CGS), Nancy Benjamin (TD), Jim Best (PWC), Bob Cowles (CUN), Sam
 Drake (WSA), Jim Forkner (PSU), Lyn Hadley (IBM), John Hartmann (IBM), Pat
 Hennessy (HUG), Pete Jobusch (SNO), Arny Krueger (ANG), Joe Morris (UNT),
 Henry Nussbacher (CNY), Rich Paymer (TYM), Dick Rawson (TYM), Chuck
 Rodenberger (IBM), Carey Schug (CIK), Nancy Schiffmann (NII), Chris Thomas
 (UR), Lee Varian (PU), John Wagner (PU), Donna Walker (PY), Fred Webber
 (IBM), and Tom Wilson (SNO) for reviewing the manuscript and making many
 valuable suggestions. I am particularly grateful to Manos Maneyas (IBM)
 and Pat Ryall (AMD), who devoted many hours to trying to prevent me from
 leading new CMS system programmers astray, and to Jean Olenick (RCH), who
 taught me to be a VM system programmer in the first place. In all
 fairness, I must also thank the authors of ZORK for their unwitting
 contribution to this project. --MWV

 PAGE iii

 Table of Contents Table of Contents

 I. The Use Of Control Files . 1

 A. CMS UPDATE . 1
 B. VMFASM . 3
 C. VMFLOAD . 3
 D. Recommended Control File . 4

 II. Service Minidisk Layouts . 5

 A. IBM Recommendation . 5
 B. My Recommendation . 7
 C. Assumptions for this Presentation 9

 III. Installing Corrective Service for CP 10

 A. Making a CP Module Resident 10
 B. Removing a Bad Fix . 13
 C. Applying a Fix . 18

 IV. Installing Preventive Service for CP 23

 A. Ordering the PUT Bucket . 23
 B. The Paper Documentation . 23
 C. New Service Minidisks . 23
 D. The Memoranda from the Tape 23
 E. "Mapping" the PUT . 24
 F. Loading the Service from the PUT 26
 G. Carrying Forward Old Corrective Service 27
 H. Taking the Actions Described in the PUT Bucket 31
 I. Carrying Forward Your Local Mods 35
 J. Testing a New Version of CP 36
 K. Putting a New Version of CP into Production 36

 V. Converting to a New Release of CP 37

 A. Loading Up the Base Tape (and Possibly a Service Tape) 37
 B. Doing What the Bucket Says 37
 C. Carrying Forward Old Corrective Service 38
 D. Carrying Forward Your Local Mods 38
 E. Compatibility Problems . 38

 VI. Advanced Nucleus Theory . 39

 A. Building and Delivering a CP Nucleus 39
 B. Defining A V=R Area: DMKSLC 40
 C. Detecting Nucleus Overflow 41
 D. Backing Your Nucleus Up . 42
 E. Logging and Numbering Your Systems 43
 F. Archiving Your Load Maps . 43
 G. Unresolved References . 44
 H. The Small CP Nucleus Option 45

 PAGE iv

 I. Alternate CP Nuclei . 46
 J. The Perils of SHUTDOWN . 47

 VII. Maintaining Multiple Systems 49

 A. A Test System . 49
 B. The FRE013 Trap . 51
 C. Systems for Multiple CPUs . 52
 D. Maintaining Distributed Systems 53

 VIII. The Differences Between CMS Service and CP Service 55

 A. CMS Macro Update and Auxfile Names 55
 B. Another Maxim . 55
 C. CMS Structure . 56
 D. Recommended Control Files and Service Minidisks for CMS 59

 IX. Installing Corrective Service for CMS 62

 A. Regenerating a CMS Module . 62
 B. Putting It on the S-disk (Or on the Y-disk) 65
 C. A Digression on the Subject of Updating a Production CMS System . 67
 D. Updating a Shared Segment . 70
 E. Updating an IPL Deck . 72
 F. Updating the CMS Nucleus . 73

 X. Installing Preventive Service for CMS 75

 A. New CMS Service Minidisks . 75
 B. Loading the Service . 76
 C. Rebuilding the Assembler Auxiliary Directory 77
 D. Building a Nucleus on the Alternate S-Disk 77
 E. Building Alternate Saved Systems 78
 F. Making the Test CMS System Available to Your Users 79
 G. Putting a New Version of CMS Into Production 79

 XI. Converting to a New Release of CMS 80

 XII. Installing Service on Program Products 81

 XIII. Converting from SP1 CMS to SP2 CMS 82

 A. SP2 Changes that Affect CMS Installation and Service 82
 B. Before the Tape Arrives . 84
 C. Loading Up SP2 CMS from the Distribution Tape and the PUT 86
 D. Building the CMS Nuclei and Saved Systems 87
 E. What To Do If You Don't Like the Default Shared Segment Locations 91
 F. What To Do If You Don't Like the Default Nucleus Location or Size 92
 G. Notes on Updating a Production SP2 CMS System 95
 H. Miscellaneous Caveats . 96

 PAGE v

 Appendices Appendices

 A. Applying Service to Other Levels of VM 97

 Naming Conventions for Current Levels of VM 97
 Service Disk Layouts for "Delta" Systems 98
 Preferred Auxfiles . 99

 B. The FRE013 Trap . 100

 C. Mod to Resolve External References in Small CP Nucleus 103

 D. Alternate Nucleus Mod, System Numbering Mod, and
 EXECs for Building and Installing CP 106

 E. IPLable System Which Decides Which SP2 CMS to IPL 124

 PAGE vi

 PAGE 1

 I. The Use Of Control Files I. The Use Of Control Files

 Time constraints force me to assume that you have some familiarity with
 CMS, the CMS file system, and the common CMS tools, such as LISTFILE and
 EXEC. I think a brief refresher on control files and the CMS UPDATE
 command, as they are used in VM service installation, would be in order,
 though.

 A. CMS UPDATE A. CMS UPDATE

 CMS UPDATE is the tool that is used to apply fixes to VM. UPDATE is a lot
 like the OS utility IEBUPDTE. It can be used to insert statements into a
 file, delete statements from a file, or replace existing statements with
 new ones. UPDATE takes as input a base file, such as DMKSCH ASSEMBLE (the
 source for the CP scheduler), and update files, such as DMKSCH S12052DK:

 FILE: DMKSCH S12052DK ____ ______ ________

 ./ I 4040000 $ 4045000
 NI VMQLEVEL,255-VMCOMP RESET COMPUTE BOUND @VA12052

 Note that UPDATE doesn't default to replacing the file it is updating. Its
 normal mode of operation is to leave the input file untouched and to build
 an output file containing the updated version of the input file. (This
 output file has the same name as the input file, but preceded by a dollar
 sign.) The DMKSCH S12052DK update file simply specifies that a single line
 of code is to be inserted into DMKSCH ASSEMBLE after the statement at
 sequence number 04040000 and that this line is to be given the sequence
 number 04045000. DMKSCH S12052DK is the IBM fix for APAR VM12052. This is
 the nomenclature used for VM/SP Release 1 service; the filename is the
 module or macro to which the fix applies, and the filetype is "S", followed
 by the 5-digit APAR number, followed by "DK" for CP or "DS" for CMS.

 UPDATE doesn't just apply one update and it doesn't just apply all existing
 updates. It is much smarter than that. What it does do is use information
 from some other files, the "control file" and the "auxiliary control
 files", to decide which of the available updates are appropriate to apply
 to this particular system. A typical IBM-supplied control file looks like
 DMKSPM CNTRL, the control file for MP systems:

 FILE: DMKSPM CNTRL ____ ______ _____

 TEXT MACS DMKSPM DMKSP DMKMAC DMSSP CMSLIB OSMACRO
 MP UPDTMP
 AP UPDTAP
 TEXT AUXSP12
 TEXT AUXSP11
 TEXT AUXSP

 The first field in each of these statements is the "update level
 identifier", which you can think of as a name field and can ignore just
 now. The second field on each control file statement defines the

 PAGE 2

 statement's function. There are three kinds of statements in this control
 file, the MACS statement, two statements which specify the name of an
 update ("UPDT..."), and two statements which specify the name of an
 auxiliary control file ("AUX..."). The MACS statement is not used by
 UPDATE. The other statements in this control file tell UPDATE what update
 files should be applied, if they exist. And the order of these statements
 specifies the order in which the specified updates should be applied. One
 tricky thing you must remember is that in applying updates you read both
 the control file and the auxiliary control files (the "auxfiles") from the
 bottom upwards.

 Now, if UPDATE is told to update DMKSCH ASSEMBLE using the DMKSPM control
 file, it starts with the bottom-most record in the control file, "TEXT
 AUXSP". That "AUXSP" specifies the filetype of an auxfile. So, UPDATE
 looks on all accessed disks for a file named DMKSCH AUXSP, which it finds:

 FILE: DMKSCH AUXSP D1 ____ ______ _____ __

 S10790DK 106 UV04479 PERFORMANCE FIX FOR MAIN STORAGE OVERCOMMIT
 S12077DK 101 UV02615 RESET Q3 BIT AT Q-ADD
 S12052DK 101 UV02605 RESET COMPUTE BOUND BIT AT Q-ADD

 (Note that if there were two such files, the one on the disk earliest in
 the disk search order is the one that would be used.) This auxiliary
 control file lists some updates that should be applied to DMKSCH, so UPDATE
 applies them, starting with the one at the bottom of the auxfile and
 working its way up. Then, UPDATE steps up a notch in the control file, to
 the line that says "TEXT AUXSP11". That causes it to look around for
 another auxfile, this one named DMKSCH AUXSP11. It doesn't find such a
 file, so it steps up to the next record in the DMKSPM control file, the one
 that says "TEXT AUXSP12". If it finds a file named DMKSCH AUXSP12, it
 applies any updates listed in that file. Then it steps up once more to the
 next record in the control file, the one that says "AP UPDTAP". This is a
 slightly different kind of control file record. It doesn't specify the
 name of an auxfile which specifies updates; instead it directly specifies
 the name of an update, "UPDTAP". (Think of it as being like direct
 addressing vs. indirect addressing.) So UPDATE looks around for an update
 file named DMKSCH UPDTAP and applies it if there is one. Up one more
 notch, to the "MP UPDTMP" record, and UPDATE looks for a file named DMKSCH
 UPDTMP, finds it, and applies it. With that, it is all done.

 What the control file gives you, then, is a way to tailor your system. If
 you have an MP system, you use an MP control file, which specifies that the
 base source for the system is to be updated with all the APAR fixes plus ____
 all the AP and MP updates. If you have an AP system, you use the AP
 control file to specify that the fixes and the AP updates are to be
 included, but the MP updates are not. If you are running a UP, you use a
 control file that lists neither the AP nor the MP updates, but does list
 the APARs. Control files can get to be much more elaborate than this one,
 but even the most elaborate ones are easy, once you get the hang of it.
 The important thing for you to understand now is that the purpose of
 control files is to allow you to tailor your system.

 PAGE 3

 B. VMFASM B. VMFASM

 If you have followed this much of the process, then you are almost one of
 the initiated. There are just two more bits of arcane lore for you to
 master. First, there is a tool called VMFASM which is an EXEC which is
 used to invoke UPDATE to apply updates and then to invoke the assembler to
 assemble the updated source. VMFASM uses the MACS statement in the control
 file to decide which maclibs to GLOBAL before doing an assembly. (You will
 note that the MP maclib, DMKSPM, is concatenated ahead of all the other
 maclibs here, since this is the MP control file.) When VMFASM invokes
 UPDATE, UPDATE applies the updates and then passes back to VMFASM the
 "update level identifier" (the "name field" in the control file record) of
 the highest update file that it found. Assuming in this case that there
 was a DMKSCH UPDTMP someplace on the accessed disks, UPDATE would tell
 VMFASM "MP". If there had not been a DMKSCH UPDTMP and there had been a
 DMKSCH UPDTAP, then UPDATE would have told VMFASM "AP". But since there
 was an UPDTMP, UPDATE tells VMFASM "MP", and then, after the assembly is
 done, VMFASM names the textfile (that's an "object deck" if you just came
 in from OS) DMKSCH TXTMP, rather than DMKSCH TEXT. That is, if the update
 level identifier of the highest-level update that was found is anything
 other than "TEXT", VMFASM gives the textfile a filetype formed by appending
 the update level identifier to the letters "TXT", as "TXTMP".
 Incidentally, if no updates are found, then the update level identifier
 from the MACS statement is used to name the textfile; that would make it
 "TEXT" in this case.

 C. VMFLOAD C. VMFLOAD

 Second piece of arcane lore: there is a tool called VMFLOAD which is used
 to build system nuclei. VMFLOAD uses the control file, too, but it reads
 the control file from the top down (skipping the MACS record). The reason
 VMFLOAD works this way is that it is designed to pick up the version of the
 textfile that is tailored to your system, i.e., the one that was built with
 your control file. For example, if VMFLOAD is building a CP nucleus using
 this DMKSPM control file, when it is time to find a textfile for DMKSCH,
 VMFLOAD picks up the first update level identifier in this control file,
 "MP", and scans all the accessed disks for a file named DMKSCH TXTMP; if
 that fails, VMFLOAD picks up the next update level identifier and scans for
 DMKSCH TXTAP; and if that fails, it scans for DMKSCH TEXT. The result of
 using VMFLOAD with this MP control file, then, will be to build a CP
 nucleus which contains all the MP-specific CP code. Most CP modules don't
 have AP/MP updates; in those cases, VMFLOAD will use the TEXT textfile, but
 in the other cases, it will use the TXTAP or TXTMP textfile.

 So, there you have it; that is the control mechanism for VM service
 installation. We use one control file per component and one or more
 auxiliary control files (auxfiles) for every module that has service. We
 do not use CDS's or FMID's or ++LMODIN statements or any of that sort of
 thing. Instead, it is all done with a control file and some auxfiles.

 PAGE 4

 D. Recommended Control File D. Recommended Control File

 I am going to assume the use of the DMKSPLCL control file for CP (and
 parallel control files for CMS and the other products) throughout the
 remainder of this presentation:

 FILE: DMKSPLCL CNTRL A1 ____ ________ _____ __

 TEXT MACS DKLCLMAC DKPTFMAC DMKSP DMKMAC DMSSP CMSLIB OSMACRO
 LCL AUXLCL
 PTFS AUXPTFS (Do not make the identifier here "PTF"!)
 TEXT AUXSP12
 TEXT AUXSP11
 TEXT AUXSP

 DMKSPLCL CNTRL is designed to be used to install CP corrective service and
 local modifications on a VM/SP Release 1 system running on a uni-processor.
 Note that this control file would have to be modified for an AP or MP
 system. The MACS statement concatenates two new maclibs ahead of the IBM-
 supplied maclibs. One of the new maclibs, DKLCLMAC, contains local macros
 and locally-modified macros. The other, DKPTFMAC, contains macros which
 have been updated by corrective service. This control file assumes that
 all updates, both local and IBM-supplied, will be listed in auxfiles and
 that local mods and locally-applied service will be listed in auxfiles
 named AUXLCL and AUXPTFS. These two auxfiles are placed above the IBM-
 supplied auxfiles in the control file so that any corrective service will
 be applied on top of the preventive service from the PUTs and any local
 mods will be applied on top of all the IBM code. (A note of warning, don't
 use "PTF", rather than "PTFS" as an update level identifier; "PTF" is
 treated as a special case by both UPDATE and VMFLOAD.)

 The philosophical basis for this control file and for the service minidisk
 layout that I will be recommending is:

 +---------------------------------------+
 | RULE NUMBER ONE |
 +---------------------------------------+
 | NEVER CHANGE ANYTHING IBM SENDS YOU |
 +---------------------------------------+

 Actually, "rule" is not a strong enough word here; "dogma" would be more
 appropriate for the way most of the old users feel about this maxim. We do
 not change the files IBM sends us for the very simple reasons that we have
 burned ourselves when we changed their files and we have confused ourselves
 when we changed their files. By setting up your maintenance procedures so
 that you never alter any file you get from IBM, you protect yourself from
 your own blunders and you force some accountability on yourself. No matter
 how badly you mess things up, you can always get back to a known base and
 you can always see what IBM did and what you did. If an IBM file must be
 changed, then copy it to your own disk and change the copy. The changed ____
 copy will be picked up in preference to the original (because of your disk
 search order), but you can always get back to the original and you can
 always see what the differences are.

 PAGE 5

 II. Service Minidisk Layouts II. Service Minidisk Layouts

 A. IBM Recommendation A. IBM Recommendation

 The sysgen manual tells you to use this minidisk layout for CP service:

 +------------+
 191 | WORKAREA |
 +------------+

 +--+
 294 | CP AUXFILES AND UPDATES, |
 | LOCAL MODS AND THE RESULTANT TEXTFILES, |
 | LOCALLY-APPLIED SERVICE AND THE RESULTANT TEXTFILES |
 +--+

 +-----------------------------+
 194 | CP TEXTFILES AND MACLIBS |
 +-----------------------------+

 +--------------------------------------+
 394 | CP ASSEMBLE, COPY, AND MACRO FILES |
 +--------------------------------------+

 There are two things that I find really bad about this recommendation.
 First, mixing local mods and locally-applied service with the files from
 the base tape and the PUTs on the 294 disk is just bound to lead to
 problems. It means that you are going to have to have write access to a
 disk that is full of files that you should not be changing (or accidentally
 erasing). It is also going to make things messy and confusing going from
 PUT to PUT.

 +---------------------------------------+
 | RULE NUMBER TWO |
 +---------------------------------------+
 | KEEP YOUR STUFF SEPARATE FROM IBM'S |
 +---------------------------------------+

 Understand that in VM, corrective service is yours, not IBM's. By
 "corrective service", I mean locally-applied service, fixes you get from
 INFO/DATA or over the phone or through the mail from the Support Center or
 from a PUT that you haven't yet installed. I would strongly recommend that
 even if you decide to stick with the IBM service disk layout, you modify it
 to the extent of keeping all local files on your 191 disk, rather than
 mixing local files with the files that came on the release tape and the
 PUTs. (This, incidentally, is also what the SIPO/E manual suggests.)

 PAGE 6

 My second problem with the standard IBM service disk layout is that it
 violates:

 +---------------------------+
 | RULE NUMBER THREE |
 +---------------------------+
 | DON'T EXPECT IT TO WORK |
 +---------------------------+

 When you load a service tape with VMSERV and default to the standard disk
 layout, all the CP textfiles, loadlists, and maclibs go onto your 194 disk,
 replacing textfiles, loadlists, and maclibs from the base system and from
 earlier PUTs. If the new PUT turns out to be a dog, you have to go through
 considerable contortions to back it all off. The typical old user, though,
 loads all the files for the CP base onto a single minidisk and never again
 gets a write link to that disk for the duration of that release. When he
 gets a PUT, he loads all of the CP files from the PUT onto a single disk
 and never again gets a write link to that disk for the duration of that
 PUT.

 +--------+
 | PUT |
 +--------+
 |
 +--------+
 | BASE |
 +--------+

 The next time he decides to install a PUT, he gets himself a new minidisk
 and loads all the CP files from that PUT onto that disk. (Note that VM
 PUTs are cumulative, so the VM user can skip over PUTs and doesn't combine
 the files from PUT1 and PUT5 in this example.)

 +--------+ +--------+
 | PUT1 | | PUT5 |
 +--------+ +--------+
 \ /
 +--------+
 | BASE |
 +--------+

 With this minidisk layout, the old user has the capability of building CP
 systems at either of the two PUT levels, by accessing one or the other of
 his two PUT disks, followed by his base disk. For that matter, he can
 still build himself a base system, if he wants to, by accessing just the
 base disk. For him, backing out of a bad PUT is simply a matter of
 changing his PROFILE EXEC to access the old PUT disk, rather than the new
 one, and then rebuilding his CP nucleus.

 PAGE 7

 B. My Recommendation B. My Recommendation

 I recommend the use of a service disk layout similar to this one for SP CP:

 +-------------+ +---------------+
 191 A | LOCAL FILES | 291 | ALTERNATE 191 |
 +-------------+ +---------------+

 +-------------------------------+ +---------------+
 194 C/A | ALL CP FILES FROM CURRENT PUT | 294 | ALTERNATE 194 |
 +-------------------------------+ +---------------+

 +---------------------------------+
 195 D/A | ALL CP FILES FROM 1.1 BASE -or- |
 | ALL CP FILES FROM PUT 8105 and |
 | ALL CP FILES FROM 1.0 BASE |
 +---------------------------------+

 This layout is typical of those used by most of the older VM installations,
 although many of their layouts have a few more bells and whistles. The
 important points about this layout are these: (1) files from the base
 release tape are never contaminated by service (except when there is a
 "level set"); (2) files from the PUT are never contaminated by locally-
 applied service or local mods; and (3) in going from PUT to PUT, the PUT
 disk and the local disk are flip-flopped with their alternates for ease of
 backout. Note that in this layout EVERYTHING from the PUT goes onto the
 PUT disk; this includes even new ASSEMBLE files. The idea is to allow you
 always to be able to tell for certain where a piece of questionable code
 came from and always to be able to back it out cleanly and reliably.

 You may, of course, need to tailor this disk layout for your installation.
 Obviously, the virtual addresses you choose are not important, so long as
 you have an EXEC which can remember them and access them in the correct
 order. You may need a few more layers in the stack of disks. You may need
 to apply other vendor mods to your system, for example, in which case your
 other vendor service disk might be at virtual address 193 and would be
 accessed above the IBM PUT disk, as B/A in this example. (Incidentally,
 Rules Number One, Number Two, and Number Three apply to other vendors, as
 well as to IBM. Never change their stuff; keep it separate from your stuff
 and from IBM's; and don't expect it to work either.) Installations with
 lots of local mods frequently choose to configure a disk for base mods
 below their A-disk (and above the PUT disk, of course) and to keep updates
 to their mods on the A-disk. Other installations keep locally-applied
 service on a separate disk from local mods; this disk is positioned above
 the PUT disk and below the local mods disk.

 Note that if you can't afford to keep all the source online, you can still
 use this sort of minidisk layout. What you should do in that case is get
 yourself a small minidisk for just the base source files that you actually
 need to use. Any time you need to apply a fix or a mod to a CP module, you
 should load the ASSEMBLE file for that module from the distribution tape
 onto your small source minidisk. (You would probably then want to leave it
 there for the rest of that release.) You should access this base source
 minidisk after all the other service minidisks.

 PAGE 8

 The stack of disks can get quite deep, if you have modified mods and
 multiple other vendor mods disks. The depth of the stack is not a problem,
 though. The same principles continue to apply. Each disk in the stack
 contains a given class of updates and the auxfiles which list those updates
 and the textfiles which came with them. The stack is ordered with the
 files from the IBM release tape on the bottom, then the files from the IBM
 service tapes, then the other vendor disk (or disks), and then your stuff
 on top. But, any textfiles you create go on your disks. You will need an
 EXEC which accesses your service disks in the correct order. You may also
 find it convenient to leave mode B vacant so that when you have to get a
 TDISK to do a big assembly, you can access the TDISK as A and your 191 as
 B/A and not have to change any of the other accesses.

 I had better explain about that 195 disk before going any further, since it
 represents an aberration in VM service procedures. VM PUTs have always
 been cumulative. Last year, however, IBM decided to do a "level set" for
 VM, so we got the first non-cumulative VM PUT. PUT 8105 was cumulative; it
 contained all the service since the SP Release 1.0 base. PUT 8106 was not
 cumulative, but subsequent PUTs are cumulative, in the sense that they
 contain all the service from 8106 on. To get current, then, we have two
 options. One is to build a system composed of the SP 1.0 base, plus PUT
 8105 and a current PUT. The other option is to install a current PUT on
 top of the SP 1.1 base (which contains the 1.0 base merged with the service
 through PUT 8105). Note that there is no point in migrating from 1.0 to
 1.1 unless your 8105 tape has gotten lost somehow.

 In the standard IBM service disk layout, the non-cumulative PUT did not
 cause much of a perturbation, because everything is always glopped together
 there anyhow. You install 1.0; you overlay 8105 on the same disks; and
 then you overlay a current PUT on the same disks. The non-cumulative PUT
 did perturb the old users, though, because there was no clean place for
 8105 in their existing layouts. So, most old users who were already on SP
 when 1.1 came out opted for keeping 8105 on a separate disk accessed above
 the base and below the current PUT. They took this approach because
 overlaying 8105 on top of their base disk would have been unclean, and the
 alternative of loading up 8105 to the new PUT disk before loading up each
 new PUT would have been a pain. I keep 8105 on a separate disk myself, but
 we are now far enough beyond 8105 that the dust has settled, so I think
 that it is not unreasonable to advise you to combine 8105 with 1.0, if you
 aren't using 1.1.

 However, IBM is about to do another level set for SP Release 1. That is
 why there is an entry "TEXT AUXSP12" in the recommended control file.
 Level sets make no sense in a system which has cumulative PUTs, but some of
 the people planning VM service don't understand VM service, so we have to
 learn to cope with such things. The level set PUT will be 8209. When you
 are ready to install a service level beyond 8209, you will have to glop
 8209 on top of the other files on the 195 minidisk or put it on a separate
 disk which you access above the 195 and below the 194. Alternatively, you
 could start over by loading the SP 1.2 base onto your 195 disk.

 One other comment about disk 195: if you use CMSBATCH, then don't use
 virtual address 195 for a service minidisk. CMSBATCH erases 195, so you
 risk absent-mindedly invoking CMSBATCH from MAINT and destroying your 195.

 PAGE 9

 C. Assumptions for this Presentation C. Assumptions for this Presentation

 With this introduction, I am ready to start through the service process.
 For pedagogic purposes, I am going to assume that you are from a new VM
 installation. Since this is supposed to be a talk on service installation,
 I am going to assume that you have somehow got the SP base installed. And
 because I want to show you how to remove a bad fix, I will also assume that
 when you loaded the base, you also installed a PUT with VMSERV. I will
 assume at the start that you have applied no additional fixes to the system
 and no local mods. You have an A-disk at virtual address 191 on your MAINT
 userid which contains only your DMKSPLCL control file and the source and
 textfiles for your VM "sysgen" modules, DMKRIO, DMKSYS, and DMKSNT (and
 possibly DMKFCB). You have your SP CP base and service on other minidisks,
 either in the modified IBM layout or in my recommended old-user layout:

 OLD USER MODIFIED IBM

 +-------------------------+ +-------------------+
 191 A | WORKAREA, LOCAL MODS & | 191 A | |
 | LOCALLY-APPLIED SERVICE | | SAME |
 | (updates, auxfiles, | | |
 | textfiles, maclibs) | | |
 +-------------------------+ +-------------------+

 +-------------------------+ +-------------------+
 194 C/A | ALL CP FILES FROM THE | 294 B/A | CP AUXFILES AND |
 | CURRENT PUT | | UPDATES |
 +-------------------------+ +-------------------+

 +-------------------------+ +-------------------+
 195 D/A | ALL CP FILES FROM BASE | 194 C/A | CP TEXT FILES AND |
 | TAPE AND PUT 8105 | | MACLIBS |
 +-------------------------+ +-------------------+

 +-------------------+
 394 D/A | CP ASSEMBLE, COPY |
 | AND MACRO FILES |
 +-------------------+

 My specific examples will be using the old user layout but should be easy
 to translate to the modified IBM layout. Again, if you can't keep all the
 source online, then build a small base source minidisk (or use a TDISK for
 source) and access it after all the other service disks, as 196 E/A, in
 this case. All my examples will expect the service disks to be accessed
 either as read-only extensions of the A-disk, as shown here, or as read-
 only extension of themselves, unless some other access is explicitly
 stated. (You may prefer not to make the service disks extensions of your
 A-disk, because COPYFILE behaves better if you don't.) You want never to
 have write access to your PUT and base disks except when you are actually
 loading tapes onto them. There are two reasons for this; it will keep you
 from altering files that shouldn't be altered, and it will keep the
 assembler from playing strange tricks on you and writing files where you
 don't expect them to be written.

 PAGE 10

 III. Installing Corrective Service for CP III. Installing Corrective Service for CP

 A. Making a CP Module Resident A. Making a CP Module Resident

 You get the system into production and you go along for a while and then CP
 crashes with a PRG006 abend. You call the Support Center and tell them
 what happened and they tell you it's a known problem. The APAR number is
 VM12989. There is no fix yet, but they tell you that the circumvention is
 to make the CP module DMKVMC resident. They assume that you know how to do
 that.

 Here is how it is done. CP modules are either permanently resident or
 pageable. This is determined by their position in the "loadlist". The
 loadlist is an EXEC file which simply lists all CP nucleus modules in the
 order in which they are to be placed in the nucleus. IBM supplies several
 different load lists; you choose the one you need for your configuration:

 APLOAD EXEC AP/MP systems
 AVLOAD EXEC AP/MP systems with a V=R area
 CPLOAD EXEC UP systems
 CPLOADSM EXEC Small UP systems
 VRLOAD EXEC UP systems with a V=R area

 All the CP loadlists look something like this:

 +----------------------------+
 | &CONTROL OFF |
 | &1 &2 &3 DMKLD00E LOADER |
 | &1 &2 &3 DMKPSA |
 | . |
 | . |
 | (other resident modules) |
 | . |
 | . |
 | &1 &2 &3 DMKCPE |
 | * |
 | * END OF THE RESIDENT |
 | * VM/370 NUCLEUS |
 | * |
 | &1 &2 &3 DMKTAP |
 | &1 &2 &3 DMKVMD |
 | &1 &2 &3 DMKCFC |
 | . |
 | . |
 | &1 &2 &3 DMKVMC |
 | . |
 | . |
 | &1 &2 &3 DMKURS |
 | &1 &2 &3 DMKCKP |
 | &1 &2 &3 LDT DMKSAVNC |
 +----------------------------+

 PAGE 11

 As you can see, a loadlist is just a list of filenames and, in some cases,
 filetypes. The VM loader (DMKLD00E LOADER) is the first item in the
 loadlist; both its filename and its filetype are specified. The loader is
 followed by DMKPSA (page zero of the CP nucleus) and the other resident
 modules, ending with DMKCPE ("CP end"). After DMKCPE come the pageable
 modules. The filetypes are not specified for the system modules because
 the loader uses your control file to decide what the filetypes should be
 (TEXT, TXTPTFS, TXTLCL, etc.). The last two items in the loadlist must be
 DMKCKP (the checkpoint module) and a file named LDT DMKSAVNC, which
 contains one record, which says "LDT DMKSAVNC". This is a LOADER TERMINATE
 statement which defines the entry point to be DMKSAVNC, the code which
 actually writes the new nucleus out to the sysres volume.

 To make a pageable module resident, all you do is move it from being after
 DMKCPE in the loadlist to being before DMKCPE. You could do this by just
 editing the loadlist EXEC that you are using. That is fast and easy, but
 it is also slovenly, and it will get you into trouble someday. The
 loadlists should be maintained with UPDATE and auxfiles. Here is how it is
 done. First, create an update file to sequence the loadlist EXEC you are
 planning to use. (This is made necessary by the fact that IBM maintains
 the loadlists with the editor, rather than with UPDATE, so it doesn't
 sequence them. You will be glad to know that not using UPDATE to maintain
 the loadlists gets THEM into trouble, too.) To sequence CPLOAD EXEC, for
 example, you would build an update file called CPLOAD SEQUENCE:

 FILE: CPLOAD SEQUENCE A1 ____ ______ ________ __

 ./ S

 Now, say you are using the CPLOAD loadlist and you want to make DMKVMC
 resident as the circumvention for APAR VM12989. Create an auxfile named
 CPLOAD AUXPTFS which lists that APAR and your SEQUENCE update:

 FILE: CPLOAD AUXPTFS A1 ____ ______ _______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXPTFS $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 S12989DK - mm/dd/yy - MAKE DMKVMC RESIDENT TO CIRCUMVENT PROBLEM IN APAR
 * VM12989 - PRG006 ABEND - DUMP PRB00001 - PER SUPPORT CENTER
 SEQUENCE - mm/dd/yy - SEQUENCE LOADLIST EXEC BECAUSE IBM WON'T

 Then invoke XEDIT with the CTL option:

 xedit cpload exec c (ctl dmksplcl

 XEDIT will first use your CPLOAD AUXPTFS file to update CPLOAD EXEC. It
 will pick up the bottom-most update, CPLOAD SEQUENCE, and apply that, thus
 sequencing CPLOAD EXEC. Then it will look for the next update listed in
 the auxfile, CPLOAD S12989DK. Since that doesn't yet exist and since you
 specified the CTL option, XEDIT will assume that what you really want to do
 in this XEDIT session is to create the update CPLOAD S12989DK. It will put
 you into an XEDIT session with the updated (sequenced) CPLOAD EXEC. In
 XEDIT, you should move the loadlist entry for DMKVMC to just before the
 entry for DMKCPE and then enter the XEDIT command "file". This will create
 an update file named CPLOAD S12989DK:

 PAGE 12

 FILE: CPLOAD S12989DK A1 ____ ______ ________ __

 ./ I 00089000 $ 89100 100
 &1 &2 &3 DMKVMC
 ./ D 00181000 $

 Assuming that IBM's CPLOAD EXEC is on your C-disk, which is accessed read-
 only, you build a modified CPLOAD EXEC on your A-disk with this command:

 update cpload exec c dmksplcl (ctl rep

 The CTL option simply tells UPDATE that DMKSPLCL is a control file, rather
 than an update file. Literally, the REP option tells UPDATE to replace the
 file being updated; in this case, however, since UPDATE will be putting the
 updated file on your A-disk, it will not replace the original on your read-
 only C-disk, but, because you said REP, it will name the updated file
 CPLOAD EXEC, rather than $CPLOAD EXEC, so you don't have to rename it.

 When you build your CP nucleus, VMFLOAD will use this modified version of
 CPLOAD EXEC from your A-disk, rather than the original one on your C-disk,
 because it will find the one on the A-disk first. So, you will get a
 nucleus which has DMKVMC resident, rather than pageable, and you should get
 fewer PRG006 abends.

 There are a number of different approaches to building and delivering a CP
 nucleus. IBM provides you with two different EXECs for doing it, VMSERV
 and GENERATE. Of the two, GENERATE has more function and flexibility. I
 will discuss the various theories of CP nucleus delivery later, but right
 now, let's do it a very simple (and not very safe) way, by hand. You are
 logged onto MAINT with a virtual machine size of at least 512K; you have
 your service minidisks accessed in one of the standard ways; and MAINT's
 directory entry includes a write link to your system residence volume, with
 the virtual address the same as the real address. You issue these
 commands:

 close pun
 close rdr
 spool pun to * class n
 spool rdr class n

 vmfload cpload dmksplcl (CPLOAD might not be the loadlist you need)
 SYSTEM LOAD DECK COMPLETE
 PUN FILE 4444 TO MAINT COPY 001 NOHOLD

 order rdr 4444

 ipl 00c clear
 NUCLEUS LOADED ON VMR901 --- STARTING CYL/BLK=004, LAST CYL/BLK USED=005
 CP ENTERED; DISABLED WAIT PSW '00020000 00000012'

 spool prt to ipcs (or whatever you call your dump-reading machine)
 close prt
 PRT FILE 4448 TO IPCS COPY 001 NOHOLD

 PAGE 13

 You spool your virtual punch to your virtual reader and you tidy things up
 by closing your reader and your punch and spooling them both class N (for
 "nucleus"). You invoke VMFLOAD, which steps through your loadlist EXEC,
 punching a textfile ("object deck") for each of the items in the loadlist.
 Because you have your virtual punch spooled to yourself, these virtual
 decks will end up in your virtual reader. When VMFLOAD is done punching
 all the files in the loadlist, it puts out the message, "SYSTEM LOAD DECK
 COMPLETE". You make sure that this system load deck is the first file in
 your virtual reader and then you IPL your virtual reader, 00C. This brings
 in the loader, which was the first item in the loadlist. The loader reads
 in the textfiles which were behind it in the reader file, "link-edits" them
 into a CP nucleus, and passes control to DMKSAVNC, which writes the nucleus
 onto the volume described by the SYSRES statement in the DMKSYS textfile.

 The use of a "standalone" loader and all this punching and reading of
 virtual cards may strike you as a rather quaint way of building a system,
 but it works well and quickly, and you now have a new CP nucleus on your
 sysres volume. While the loader was building your nucleus, it was also
 creating a load map, which it sent to your virtual printer. Since your
 virtual printer was spooled to your IPCS virtual machine, IPCS will be able
 to read the loadmap from its virtual reader onto a minidisk. This map
 should be archived for use in reading CP dumps.

 B. Removing a Bad Fix B. Removing a Bad Fix

 At some point, this new nucleus gets IPLed and you run fine for a couple of
 days, but then you notice that performance seems to be degrading. You ask
 SMART (the VM Real Time Monitor) if anything is wrong, and SMART points out
 that your system is "extended" 120 pages. This means that the real memory
 being used for CP control blocks has grown 120 pages beyond the allocation
 you specified in the SYSCOR parameter in DMKSYS. In other words, 120 page
 frames that should be being used for user pages are not available to the
 users. Not surprisingly, the INDICATE LOAD command shows that your page
 steal rate is way up. Looking at SMART's log, you see that the number of
 extended pages has been increasing steadily over the past couple of days
 since your last IPL. So, you call the Support Center. Again, they tell
 you that you have encountered a known problem. The APAR is VM14782. There
 is no fix yet, so you ask to be put on the "interested parties" list for
 VM14782, so that you will be notified as soon as the fix is available.
 (They will not send you the fix, but they will send you a letter saying
 that the fix exists. You might think that it would be more useful if they
 sent you the fix rather than the letter, but those letters are potentially
 valuable. A proposal has been made that the SHARE VM Group should award a
 prize each year to the person receiving the most APAR-closing letters.)
 But, in the meantime, you need to do something about your performance
 degradation. You ask them about that and they tell you that the problem is
 caused by a "PE", a "PTF in Error", a bad fix. They suggest that you might
 want to remove this PE, APAR VM12684, from your system. They assume that
 you know how to do that.

 PAGE 14

 Here is how you remove that PE. The first thing to do is to find out what
 modules and macros were hit by VM12684:

 listfile * s12684dk *

 DMKMSG S12684DK C1
 R;

 It turns out that no macros were updated by VM12684 and only one module
 was, DMKMSG. This is good, because it means you don't have to change any
 maclibs. But you do want to change DMKMSG.

 One point that needs to be made clear for the benefit of those of you who
 have recently come into VM from VS is that VM fixes are never installed
 permanently until the developers incorporate them in the source for a new
 release of the system. That is, in the jargon, VM has "fixed-base", rather
 than "moving-base", maintenance. Therefore, when we speak of removing a
 bad fix, what we are really talking about is not applying the bad fix. In
 VM, you remove a bad fix by using VMFASM to update a temporary copy of the
 base source file (the ASSEMBLE file) with all the updates except the bad
 one and then assemble the updated copy. The updated source file is erased
 as soon as the new textfile has been created, thus leaving the original
 source file unaltered.

 This PE is in your system because at some point IBM listed it in an auxfile
 for DMKMSG. So, to get this PE out of your system, all you have to do is
 take its name out of that auxfile, reassemble DMKMSG, and rebuild your CP
 nucleus, incorporating your new textfile for DMKMSG. If you are running an
 SP Release 1.0 system, you will have an IBM auxfile called DMKMSG AUXSP.
 If you have also got some PUT beyond 8105 installed, you will also have an
 auxfile called DMKMSG AUXSP11. If you are running SP Release 1.1, you will
 have only DMKMSG AUXSP11, because the APARs listed in the AUXSP auxfiles
 were merged into the Release 1.1 base. (They did this to make things
 simple for us.) Anyhow, use LISTFILE to find whatever DMKMSG auxfiles you
 have and look to see if you can find one which specifies the update for
 VM12684, which is called S12684DK, of course. It turns out that it is in
 the AUXSP11 auxfile for DMKMSG:

 FILE: DMKMSG AUXSP11 C1 ____ ______ _______ __

 S13491DK 108 UV05121 CORRECT HANDLING OF START FIELDS IN MESSAGES
 S12594DK 108 UV04922 IMBEDDED LINEND CHARACTER HANDLED INCONSISTENTLY
 S12684DK 107 UV04645 DMKDGD RCWTASK DECREMENTED AS A TIMER VALUE.

 PAGE 15

 Since what you want to do is take this entry out of the auxfile, you could
 just edit the auxfile, but that would violate Rule Number One. Instead,
 copy DMKMSG AUXSP11 from your C-disk to your A-disk and edit the copy on
 your A-disk. Don't delete the S12684DK line; "comment" it out instead;
 that is, put some asterisks in position 1, so that UPDATE will treat the
 entry as a comment, rather than as an update name. And don't just comment
 it out; add a comment under the entry telling when you did it, why you did
 it, who told you to do it, what the APAR number is, what your incident
 number is, what your dump number is, what the name is of any VMSHARE file
 in which the problem is discussed, and anything else you can think of that
 might jog your memory later on.

 +-----------------------+
 | RULE NUMBER FOUR |
 +-----------------------+
 | ALWAYS LEAVE TRACKS |
 +-----------------------+

 A nice little touch is to add a "title" line at the top of the modified
 auxfile, which will come out in your assembly listing and make it clearer
 what is going on.

 FILE: DMKMSG AUXSP11 A1 ____ ______ _______ __

 $$*$*$*$*$*$*$*$*$*$*$* MODIFIED AUXSP11 $*$*$*$*$*$*$*$*$*$*$*$*$*$*
 S13491DK 108 UV05121 CORRECT HANDLING OF START FIELDS IN MESSAGES
 S12594DK 108 UV04922 IMBEDDED LINEND CHARACTER HANDLED INCONSISTENTLY
 *** S12684DK 107 UV04645 DMKDGD RCWTASK DECREMENTED AS A TIMER VALUE.
 *** S12684DK REMOVED BECAUSE OF CORE CANCER - 12/01/81 - VM14782 - MWV
 *** PRB00002 - SEE VMSHARE 'PROB 1SP07'

 You will note that I didn't hesitate to tell you to remove the PE, even
 though the auxfile lists two other fixes which are to be applied on top of
 this fix. It may be that the fix you're removing is a "pre-requisite" for
 one of those two fixes, in which case, you've got a problem. However,
 experience has shown me that when I remove a fix this way, if I don't get __
 sequence error messages from UPDATE or syntax error messages from the
 assembler, then it is very unlikely that the fix I'm removing is a
 functional pre-requisite for the other fixes listed above it in the
 auxfile. This is one of the joys of maintaining a system that has source-
 level service. Some IBMers will advise you instead to remove all the fixes
 above the PE in the auxfile, but then you run the risk of removing a fix
 you really need. There is, of course, an exposure which ever way you
 choose. My advice, though, is to leave the other updates in the auxfile as
 long as neither UPDATE nor ASSEMBLE complains, unless you actually have
 some reason to believe that the PE really is a pre-requisite for them. In
 either case, whenever you remove an APAR update from a module or macro, be
 certain that you remove the corresponding updates from all the modules and ___
 macros hit by the APAR. Leaving half a fix in your system is a sure way to
 get into trouble.

 PAGE 16

 You now have two files named DMKMSG AUXSP11, the original one on your C-
 disk and the modified one on your A-disk. The one you want to use is, of
 course, the one on your A-disk. This will happen automatically, because of
 your disk search order. To reassemble DMKMSG without incorporating the PE,
 you use VMFASM:

 vmfasm dmkmsg dmksplcl

 UPDATING 'DMKMSG ASSEMBLE D1'
 APPLYING 'DMKMSG S11690DK D1'
 APPLYING 'DMKMSG S11792DK D1'
 APPLYING 'DMKMSG S09531DK D1'
 APPLYING 'DMKMSG S13028DK D1'
 APPLYING 'DMKMSG S12594DK C1'
 APPLYING 'DMKMSG S13491DK C1'
 FILE 'DKLCLMAC MACLIB' NOT FOUND.
 FILE 'DKPTFMAC MACLIB' NOT FOUND.
 ASMBLING DMKMSG
 ASSEMBLER (XF) DONE
 NO STATEMENTS FLAGGED IN THIS ASSEMBLY
 DMKMSG TEXT CREATED
 R;

 This VMFASM command causes a copy of DMKMSG ASSEMBLE D1 (the base source
 file) to be updated with the four fixes listed in DMKMSG AUXSP D1 and the
 two remaining fixes listed in DMKMSG AUXSP11 A1. Note that the update
 DMKMSG S12684DK doesn't get applied. Fixes listed in DMKMSG AUXPTFS * and
 DMKMSG AUXLCL * would also be applied, if those auxfiles existed. The
 updated file is assembled, and an object deck named DMKMSG TEXT is written
 onto your A-disk. (The updated ASSEMBLE file is erased before VMFASM
 exits.) Because of your disk search order, when you build your new CP
 nucleus, the DMKMSG TEXT from your A-disk will get used, rather than the
 bad DMKMSG TEXT that IBM sent you, which is on your C-disk.

 If you type or edit that DMKMSG textfile, by the way, you will see one of
 the really sexy features of VM service. The beginning of this "object
 deck" lists precisely what fixes have been applied and even includes those
 comments that you put into the auxfile. The point here is that every
 textfile in a VM system is completely self-identifying. To find out what
 fixes a given textfile contains, you need only type it:

 PAGE 17

 FILE: DMKMSG TEXT A1 ____ ______ ____ __

 S11690DK 101 UV02593 MSDVHDIR206E SMSG RC=01 AFTER APPLYING VM09994
 * DMKMSG S11690DK D1 MNT195 10/21/80 14:05:00
 S11792DK 101 UV02626 CANNOT FORCE USER OFF WHEN IN ECHO COMMAND
 * DMKMSG S11792DK D1 MNT195 10/21/80 14:05:00
 S09531DK 101 UV02701 ABENDLOK001 AFTER SWTCHVM MACRO FOR FRETTED VMBLOK
 * DMKMSG S09531DK D1 MNT195 10/24/80 15:33:00
 S13028DK 105 UV04184 VM10995 CREATES FUTURE EXPOSURE
 * DMKMSG S13028DK D1 MNT195 03/13/81 09:25:00
 $$*$*$*$*$*$*$*$*$*$*$* MODIFIED AUXSP11 $*$*$*$*$*$*$*$*$*$*$*$*$*$*
 *** S12684DK 107 UV04645 DMKDGD RCWTASK DECREMENTED AS A TIMER VALUE.
 *** S12684DK REMOVED BECAUSE OF CORE CANCER - 12/01/81 - VM14782 - MWV
 *** PRB00002 - SEE VMSHARE 'PROB 1SP07'
 S12594DK 108 UV04922 IMBEDDED LINEND CHARACTER HANDLED INCONSISTENTLY
 * DMKMSG S12594DK C1 MNT194 08/25/81 07:18:01
 S13491DK 108 UV05121 CORRECT HANDLING OF START FIELDS IN MESSAGES
 * DMKMSG S13491DK C1 MNT194 08/25/81 07:18:01
 * DMKSP MACLIB A1 MNT194 8/31/81 10:45:01
 * DMKMAC MACLIB A1 MNT194 7/14/81 10:46:59
 * DMSSP MACLIB S2 CMS190 6/10/81 18:45:00
 * CMSLIB MACLIB S2 CMS190 2/07/81 12:19:00
 * OSMACRO MACLIB S2 CMS190 3/18/81 13:32:56
 * DMKMSG ASSEMBLE A1 MNT195 7/31/80 19:45:00
 ESD DMKMSG DMKCVTDB DMKCVTBD
 .
 .
 .
 END 15741SC103 020182003

 When the loader loads such a textfile, it strips off all this non-
 executable commentary and puts it into the loadmap.

 I should point out that there is another workable mechanism for removing a
 bad fix, other than commenting it out in a copy of IBM's auxfile. You can
 accomplish the same thing by building a dummy update on your A-disk and
 giving it the same name as the bad update you wish to remove. When you
 invoke VMFASM, your dummy update will get picked up in preference to IBM's
 bad update, which is on a disk later in the search order. For example, you
 could have removed VM12684 by creating the dummy update DMKMSG S12684DK on
 your A-disk and reassembling DMKMSG:

 FILE: DMKMSG S12684DK A1 ____ ______ ________ __

 ./ * DUMMY UPDATE TO REMOVE VM12684 BECAUSE OF CORE CANCER
 ./ * mm/dd/yy - VM14782 - PRB00002 - SEE VMSHARE 'PROB 1SP07'

 The only argument against doing it this way is that you don't end up with
 your comments about removing the fix in the textfile and the loadmap. If
 you look carefully at the textfile and the loadmap, however, you will see
 that the update came from your A-disk, rather than from one of IBM's disks.
 It is a matter of taste. The important point is to leave tracks.

 PAGE 18

 C. Applying a Fix C. Applying a Fix

 You build and install another new CP nucleus, which now has DMKVMC resident
 AND has VM12684 removed. Things go along smoothly for a few hours and then
 the director of your computer center comes looking for you to tell you that
 his terminal is hung up. He can't do anything with it. Thinking all you
 need to do is show him the CLEAR key, you go take a look, but you find that
 you can't do anything with it either. So, you log onto a privileged userid
 and issue a FORCE command. The system says it forced him, but he is still
 logged on, and his terminal is still hung up. You have just met your first
 "hunguser", the first of many. This particular hunguser is getting a
 trifle upset about the report he is trying to generate, so you tell the
 operators to take the system down with a dump.

 You try looking at the dump, but DUMPSCAN will not display most of the
 things you want to look at; it keeps telling you that there is no page zero
 in the dump, and, of course, all the pointers it needs are in page zero.
 After pounding your head against the wall for a while, you discover that
 the reason there is no page zero in the dump is that someone had put it on
 the free list, and pages on the free list don't get dumped. You call the
 Support Center and open two incidents, one for page zero not getting dumped
 and one for the hunguser problem. Neither of these seems to be a known
 problem, so you are asked to mail in the dump and your nucleus loadmap on
 tape, which you do. You wait a while and get three more hungusers, so you
 call back and raise the severity of the problem. Then, despite your having
 sent them an almost useless dump, one of the guys at Second Level figures
 out that your hunguser problem is a known problem and is fixed by APAR
 VM13318. He calls you and reads you updates to the IOBLOKS copy section
 and DMKIOS. He assumes you know what to do from there.

 Here is what you do. First, you have to key in the two update files he
 read you. That is, you have to key in the two update files unless you
 already have them in machine-readable on a PUT which you have received but
 have not yet installed. To find out whether the fix is on the latest PUT,
 you can either look at the SP "Memo to Users" from that PUT, if you have
 already printed it off, or you can simply mount the tape and try to load
 the fix you need:

 vmfplc2 load * s13318dk (eot

 Let's assume that you don't luck out; it's not on the PUT and it's not in
 INFO/DATA either, so you have to key it in. The two files you create
 should be named IOBLOKS S13318DK and DMKIOS S13318DK. The updates should
 be marked with an "update identifier" field somewhere on the right hand
 side. I find that it is useful to make this field NOT look just like it
 will when IBM sends the fix out on a PUT, so I always know at a glance that
 this is a fix that I keyed in and, thus, that it may very well be different
 from the final version of the fix. I just put the five-digit APAR number
 in column 67:

 PAGE 19

 FILE: IOBLOKS S13318DK A1 ____ _______ ________ __

 ./ R 00400000 00400000 $ 00400000 1000 13318
 * | IOBQDTO | I*9 | IOBRSV4 | 13318
 ./ R 00790000 00790000 $ 00790000 1000 13318
 IOBERCNT DS 1X I*9 ERROR RETRY COUNT 13318
 IOBRSV4 DS 3X RESERVED FOR FUTURE USE 13318

 FILE: DMKIOS S13318DK A1 ____ ______ ________ __

 ./ R 15700000 15710000 $ 15700000 200 13318
 BZ IOSCCH NO LOGOUT PEND - CALL DMKCCH 13318
 SLR R1,R1 CLEAR WORK REG 13318
 IC R1,IOBERCNT LOGOUT PEND / CCC RETRY COUNT 13318
 C R1,F10 RETRY COUNT EXCEED 10 13318
 BH IOSFATAL YES, REFLECT TO USER 13318
 LA R1,1(,R1) INCREMENT RETRY COUNT 13318
 STC R1,IOBERCNT STORE IN IOBLOK 13318
 B IOSQBSY QUEUE OFF THE CHANNEL 13318
 IOSFATAL NI RCHSTAT,255-RCHBUSY TURN OFF CHANNEL BUSY 13318
 NI RCUSTAT,255-RCUBUSY TURN OFF CONTROL UNIT BUSY 13318
 NI RDEVSTA4,255-RDEVBUZY DEVICE NO LONGER BUSY 13318
 XC RDEVAIOB,RDEVAIOB CLEAR ACTIVE IOBLOK 13318
 XC RDEVPROC,RDEVPROC CLEAR PROC ADDRESS 13318
 OI IOBSTAT,IOBFATAL FATAL I/O IF EXCEED 10 RETRIES 13318
 CALL DMKSTKIO STACK THE IOBLOK 13318
 B IOSTEXIT EXIT TO CALLER 13318
 IOSCCH NI RDEVSTA4,255-RDEVBZCH RESET DEVICE BUSY ON CHAN 13318

 Next you need to create AUXPTFS auxfiles for IOBLOKS and DMKIOS. Here is
 what they should look like:

 FILE: IOBLOKS AUXPTFS A1 ____ _______ _______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXPTFS $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 S13318DK - 10/06/81 - FROM G.B., LEVEL II, FOR PRB00003 - HUNGUSERS

 FILE: DMKIOS AUXPTFS A1 ____ ______ _______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXPTFS $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 S13318DK - 10/06/81 - FROM G.B., LEVEL II, FOR PRB00003 - HUNGUSERS

 This is the first time you have had to update a system macro, so we had
 better talk some about maclibs. IBM provides two macro libraries for SP
 CP, DMKMAC MACLIB and DMKSP MACLIB. DMKMAC contains the macro and copy
 sections which are not "versioned" by SP. DMKSP contains the macro and
 copy sections which are "versioned" by SP. Nobody knows why IBM didn't
 merge the macro libraries when they merged the source, but they didn't, so
 you need to be conscious of the fact that there are two libraries.
 (Similarly, there are two CMS maclibs, CMSLIB and DMSSP.) There are two
 schools of thought concerning the best way to apply corrective service to
 system macros. One acceptable approach is to copy the IBM maclib to your
 A-disk and replace the macro in that copy. Unfortunately, IBM doesn't
 provide a nice primitive for doing that, though it would be easy enough for

 PAGE 20

 you to write your own EXEC for this, using VMFASM as a guide. What your
 EXEC should do is update the macro using UPDATE and the specified control
 file, replace the macro in the specified maclib using the MACLIB REP
 command, append the UPDATES file to the maclib using COPYFILE, and erase
 the updated macro, the UPDLOG file, and the UPDATES file. If you are not
 going to be applying much corrective service and you are not going to be
 modifying the system much, then this would be the soundest approach for you
 to use in applying corrective service to macros.

 The second approach is to build a separate maclib for macros and copy
 sections which have corrective service applied to them. A reasonable name
 might be PTFMAC MACLIB, but you may also want a service maclib for CMS, so
 I would suggest DKPTFMAC and DSPTFMAC and parallel libraries for macros and
 copy sections which are updated by local modifications called, say,
 DKLCLMAC and DSLCLMAC. Don't name your own maclib NEWMAC; VMFMAC uses
 NEWMAC MACLIB as a temporary file. Note that if you are going to build
 your own maclibs, you must include their names in the MACS statement in
 your control file, as I did in the recommended control file. Note, too,
 that you can't list more than eight maclibs in a control file, because that
 is all that the GLOBAL MACLIB command can handle.

 You build a maclib by creating an EXEC file whose filename is the same as
 the filename of the maclib and whose contents are a list of the macros and
 copy sections that you want included in the maclib. You can take a look at
 DMKMAC EXEC to see how this is done. In this case, since we have only one
 item to go into DKPTFMAC MACLIB, the maclib EXEC looks like this:

 FILE: DKPTFMAC EXEC ____ ________ ____

 &1 &2 IOBLOKS 13318

 Once you have this EXEC built, you can build the maclib with the VMFMAC
 command:

 vmfmac dkptfmac dmksplcl

 UPDATING 'IOBLOKS COPY D1'
 APPLYING 'IOBLOKS S11854DK D1'
 APPLYING 'IOBLOKS S12470DK D1'
 APPLYING 'IOBLOKS S12635DK C1'
 APPLYING 'IOBLOKS S13318DK A1'
 IOBLOKS COPY ADDED.
 DKPTFMAC COPY ADDED.

 VMFMAC is very similar to VMFASM and VMFLOAD. It steps through the maclib
 EXEC, putting each of the listed macros or copy sections into the new
 maclib, after updating it as specified by the control file. _____

 PAGE 21

 One drawback to creating these additional maclibs, rather than modifying
 the ones you get from IBM, is that some of the installation EXECs for
 program products know the names of the standard maclibs and will have to be
 changed to know about your new maclibs as well. I find, however, that the
 program product installation EXECs cannot be trusted to have the standard
 maclib names right anyhow, so either way you are going to have to check
 them and possibly fix them up.

 Once you have your PTF maclib built, you are ready to reassemble DMKIOS.
 You will be using our DMKSPLCL control file, so VMFASM will GLOBAL the
 maclibs listed in the MACS record in that control file. This will
 concatenate DMKSP MACLIB and DMKMAC MACLIB after your DKPTFMAC MACLIB, so _____
 the assembler will use the updated version of IOBLOKS.

 vmfasm dmkios dmksplcl

 UPDATING 'DMKIOS ASSEMBLE D1'
 APPLYING 'DMKIOS S11399DK D1'
 APPLYING 'DMKIOS S11412DK D1'
 APPLYING 'DMKIOS S11946DK D1'
 APPLYING 'DMKIOS S11854DK D1'
 APPLYING 'DMKIOS S12022DK D1'
 APPLYING 'DMKIOS S12293DK D1'
 APPLYING 'DMKIOS S12174DK D1'
 APPLYING 'DMKIOS S12470DK D1'
 APPLYING 'DMKIOS S12127DK D1'
 APPLYING 'DMKIOS S12629DK D1'
 APPLYING 'DMKIOS S12947DK D1'
 APPLYING 'DMKIOS S12887DK D1'
 APPLYING 'DMKIOS S12984DK D1'
 APPLYING 'DMKIOS S13061DK D1'
 APPLYING 'DMKIOS S13169DK D1'
 APPLYING 'DMKIOS S13206DK D1'
 APPLYING 'DMKIOS S12963DK D1'
 APPLYING 'DMKIOS S13286DK C1'
 APPLYING 'DMKIOS S12941DK C1'
 APPLYING 'DMKIOS S13443DK C1'
 APPLYING 'DMKIOS S13318DK A1'
 FILE 'DKLCLMAC MACLIB' NOT FOUND.
 ASMBLING DMKIOS

 ASSEMBLER (XF) DONE
 NO STATEMENTS FLAGGED IN THIS ASSEMBLY
 FILE 'DMKIOS TEXT A1' NOT FOUND.
 DMKIOS TXTPTFS CREATED
 R;

 VMFASM will write the new textfile onto your A-disk and will name it DMKIOS
 TXTPTFS (because the DMKSPLCL control file specified "PTFS" as the update
 level identifier for the highest-level update applied to DMKIOS, the one
 listed in your DMKIOS AUXPTFS auxfile.) When you build your new CP nucleus
 later, you will again use the DMKSPLCL control file, which will tell the
 loader to pick up a TXTPTFS file in preference to a TEXT file.

 PAGE 22

 I should warn you that VMFASM quietly erases any TEXT textfile you may have
 on your A-disk for the module you are assembling, even when the new
 textfile name is going to be TXTPTFS or TXTLCL or TXTTST or whatever. That
 is what that "DMKIOS TEXT A1 NOT FOUND" message is about; it couldn't find
 a TEXT textfile to erase this time. This is done to protect naive users
 from leaving around obsolete textfiles which they might accidentally
 incorporate into a nucleus. But, it can be a really sneaky problem for the
 user who is sophisticated enough to want to have more than one version of a
 textfile. Once you understand what's going on with control files, etc.,
 you should fix VMFASM not to do this to you.* Another danger from VMFASM
 is that it uses a file named 'modulename cntrlname' as a work file, so if,
 in this case, you had a file named DMKIOS DMKSPLCL, it would be erased.

 You have been worrying about that dump without page zero in it, so you call
 the Support Center. They haven't done anything about it yet, so you take a
 look at the code yourself. You see that it would be trivial to fix DMKDMP
 always to dump page zero, so you produce a temporary local fix to use until
 you hear from IBM. Because you are expecting this local fix to be replaced
 by an official fix from IBM, you list the update in an AUXPTFS file, rather
 than in an AUXLCL file. You name it with its five-digit APAR number,
 "nnnnn", if it has been assigned one. Some people make a practice of
 naming local fixes in the form "LnnnnnDK", rather than "SnnnnnDK", to make
 it obvious that it is a local fix. I find it easier myself to use the name
 the fix will have when it comes from IBM, but I always put comments into
 both the fix and the auxfile indicating that this is strictly a local fix.
 If, as in this case, you have not been given an APAR number yet, use your
 incident number to name the temporary fix:

 FILE: DMKDMP X0328 A1 ____ ______ _____ __

 ./ * TEMPORARY LOCAL FIX FOR PROBLEM OF PAGE ZERO NOT BEING X0328
 ./ * DUMPED WHEN IT IS ON THE FREELIST X0328
 ./ * X0328
 ./ R 07110000 $ 07110100 100 X0328
 LTR R7,R3 GET THIS PAGE NUMBER. X0328
 BZ NXTPAG1 WE ALWAYS WANT PAGE 0 DUMPED. X0328

 FILE: DMKDMP AUXPTFS A1 ____ ______ _______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXPTFS $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 X0328 - 06/23/81 - TEMPORARY LOCAL FIX (DUMP PAGE 0 REGARDLESS) - MWV

 You reassemble DMKDMP with VMFASM and you have the file DMKDMP TXTPTFS on
 your A-disk ready to be incorporated into your new nucleus. You rebuild
 your CP nucleus, using VMFLOAD and the DMKSPLCL control file, and you now
 have a CP nucleus which differs from the original one by having DMKVMC
 resident, VM14782 removed, VM13318 applied, and your local fix for incident
 X0328 applied.

 * The fix is to comment out two lines from the end of the EXEC:
 &IF &TEXT EQ TEXT &SKIP 1
 ERASE &NAME TEXT A1

 PAGE 23

 IV. Installing Preventive Service for CP IV. Installing Preventive Service for CP

 Things go along more smoothly now, but you have decided that you have been
 encountering too many known problems. Corrective service is getting to be
 a drag, so you decide to do some preventive service instead, by installing
 that VM PUT that came in the mail last week.

 A. Ordering the PUT Bucket A. Ordering the PUT Bucket

 The first thing you should do is phone the Support Center and ask Level One
 to send you a copy of the "error bucket" for this PUT. If you've just come
 into VM from VS, you will be dismayed to learn that you can't get VM
 buckets through DATALINK; in fact, there is no such thing as a machine-
 readable bucket for VM. Let me add that the VM old-timers do not consider
 this a desirable state of affairs, either. The buckets generally take
 about a week to arrive, so you need to plan ahead.

 B. The Paper Documentation B. The Paper Documentation

 When you get the PUT in the mail, it is supposed to have a paper memo with
 it. Find this and read it. Sometimes it tells you about important changes
 either to the system or to the service installation process.

 C. New Service Minidisks C. New Service Minidisks

 You need a new A-disk for MAINT. If you have a 291 disk to use as an
 alternate A-disk, then rename it to 191 and rename your old 191 to 291. If
 you are using the old-user service disk philosophy, you will also use a new
 disk for the contents of the new PUT. Just flip-flop the 194 and 294 disks
 from the recommended configuration. If you are using the IBM-recommended
 service disk layout, you will be loading the new service on top of the base
 and the earlier service, so you will need only the new A-disk.

 D. The PUT Memoranda D. The PUT Memoranda

 For each product on the PUT, there is a "Memo to Users" file. You should
 always read the memoranda before you apply the service. They may make for
 rather boring reading, but they tell you about changes to the product which
 may impact you, so time spent reading them is generally rewarded. The
 memoranda are on the second file of the tape and have a filetype of MEMO.
 These commands will load all the memoranda and print the one for SP:

 attach cuu to maint as 181
 tape fsf
 vmfplc2 load * memo
 print 5664167 memo (cc

 Of course, you may prefer simply to view the memoranda on your terminal,
 rather than printing them.

 PAGE 24

 E. "Mapping" the PUT E. "Mapping" the PUT

 The PUT is in the form of one or two physical tapes containing several
 logical service tapes, one for each PUT-supported product in your customer
 profile. The first thing you need to do is determine the order of these
 logical tapes on the physical tape. Even VMSERV has to "map" the tape so
 that it knows the order of the logical tapes. There is an external label
 on the tape which will tell you what is where on the tape, but, of course,
 that's on the tape and the tape is mounted on a tape drive. If you want to
 load the service yourself, you can copy the external label before you mount
 the tape or you can map the tape yourself or you can have VMSERV do it for
 you. You can map the tape yourself with these commands:

 tape rewind
 vmfplc2 scan (eot disk date

 This creates a disk file called TAPE MAP which lists the contents of the
 tape. This file is not very concise, however, so you might find the map
 that VMSERV builds to be more useful. To map the tape with VMSERV, you do
 this:

 attach cuu to maint as 181
 vmfplc2 load (to load the VMSERV EXEC onto your 191 disk)
 access 191 c
 vmserv

 Strange as it seems, you absolutely must run the VMSERV EXEC from a disk
 that is accessed as mode C. This disk must NOT have a virtual address of
 194. VMSERV will insist upon putting some little files on your 194 disk,
 so if you don't want your 194 written on, detach it and get a 194 TDISK
 before invoking VMSERV. VMSERV will also print PUT DOCUMENT (the VMSERV
 documentation) and all the memoranda, if you reply "yes" when it asks you
 whether you want this done. (Unfortunately, VMSERV insists upon printing
 the documentation in pieces, rather than as one listing, unless you
 remember to spool your printer continuous before invoking it.) The map
 that VMSERV builds for you on your 191 looks something like this:

 PAGE 25

 FILE: SERVICE DISKMAP A1 ____ _______ _______ __

 +--+
 | * * |
 | * * VM SYSTEM PUT 8108 |
 | * * TAPE LAYOUT AND SERVICE STATUS |
 | * * |
 | * * |
 | * * RELATIVE PROGRAM NUMBER FIRST SERVICE COREQ |
 | * * TAPE - POS NUMBER FILES FILE LEVEL FLAG |
 | * * |
 | 01 01 5749010 37 003 062338 --- |
 | 01 02 5664167 22 040 010923 --- |
 | 01 03 5748XXC 04 062 010405 --- |
 | 01 04 5748XXB 04 066 010505 --- |
 | 01 05 5748RC1 07 070 010408 --- |
 | 01 06 5748AP1 02 077 030203 --- |
 | 01 07 5748FO3 02 079 010103 --- |
 | 01 08 5734LM4 02 081 C40203 COREQ |
 | 01 09 5734LM5 02 083 C40203 COREQ |
 | 01 10 5734PL1 02 085 C40203 COREQ |
 | * * |
 | * * END OF RELATIVE TAPE 01 |
 | * * |
 +--+

 This can be very useful, especially if you've memorized all your product
 numbers. I haven't done so, but I know that the logical tape with the most
 files in it is vanilla VM Release 6, that the other one with a lot of files
 must be SP, and that the one with the letters "RC" in its product number is
 PASSTHRU. The other products, whatever they may be, are installed by
 someone else, so I don't have to worry about the fact that I don't know
 what they are.

 Some of my purist friends will object, but to show how open-minded I am, I
 am going to recommend that you use VMSERV to map the tape and to print the
 documentation.

 PAGE 26

 F. Loading the Service from the PUT F. Loading the Service from the PUT

 Now you are ready to load the service for SP CP. If you look at your
 VMFPLC2 TAPE MAP or at VMSERV's SERVICE DISKMAP, you will see that the
 service for SP (5664-167) is in a logical tape containing twenty-two files,
 beginning (in my example) with file 40 of the PUT. The number and content
 of these files changes from time to time, but if you examine the SP "Memo
 to Users" or your VMFPLC2 TAPE MAP, you will see that the layout of the
 files on this logical tape is something like this:

 1. SP installation EXEC 10. CMS auxfiles
 11. CMS updates
 2. CP auxfiles 12. CMS macro auxfiles
 3. CP updates (PTFs) 13. CMS macro updates
 4. CP macro auxfiles 14. New CMS source
 5. CP macro updates 15. CMS maclibs
 6. New CP source 16. CMS textfiles
 7. CP maclibs 17. Standalone IPL decks
 8. CP textfiles 18. LOADER and service EXECs
 9. CP loadlist EXECs 19. CMS module files
 20. HELP files and XEDIT EXECs
 21. EREP txtlibs
 22. IOCP

 The CP service is going to go on your 194 disk, if you are using our
 example disk layout, so make sure that you are using your real 194 and not
 that TDISK. The commands to load the CP service are simply:

 access 194 c
 tape rewind
 tape fsf 2 <== skip PUT junk
 tape fsf 37 <== skip VM Release 6 files
 tape fsf 1 <== skip SP installation EXEC
 vmfplc2 load * * c (eof 8

 In other words, all eight files of CP service from the PUT (logical tape
 files 2 through 9) go onto one minidisk at address 194.

 If you are using the IBM disk layout, the same process is:

 access 194 a
 access 294 b
 access 394 c
 tape rewind
 tape fsf 40
 vmfplc2 load * * b (eof 4
 vmfplc2 load * * c
 vmfplc2 load * * a (eof 3

 Or, of course, in either case, you could use VMSERV to load the service.
 It is usually fewer keystrokes to do it "by hand", however.

 That's all you have to do. The service is loaded. At this point, again
 access your service disks read-only to avoid inadvertently changing them.

 PAGE 27

 G. Carrying Forward Old Corrective Service G. Carrying Forward Old Corrective Service

 The next step in installing a PUT is to check whether you have any old
 corrective service which needs to be carried forward. You will probably
 find that some of the fixes you had to apply on top of the old PUT are
 included in this new PUT and that some of them are not. You still need
 those that are not in the new PUT, so you must apply them again. If you
 had removed any bad fixes from the old PUT, you may find that the fixes for
 the bad fixes are on the new PUT, in which case you should no longer be
 removing the bad fixes. The fixes for the bad fixes will do that for you
 and probably won't assemble unless the bad fixes are applied first.

 The fixes you had applied on top of your old PUT are on your old A-disk,
 which is now called 291. Access that at mode F and take a look at it:

 listfile * * f

 CPLOAD AUXPTFS F1
 CPLOAD EXEC F1
 CPLOAD S12989DK F1
 DKPTFMAC EXEC F1
 DKPTFMAC MACLIB F1
 DMKDMP AUXPTFS F1
 DMKDMP TXTPTFS F1
 DMKDMP X0328 F1
 DMKIOS AUXPTFS F1
 DMKIOS S13318DK F1
 DMKIOS TXTPTFS F1
 DMKMSG AUXSP11 F1
 DMKMSG TEXT F1
 DMKRIO ASSEMBLE F1
 DMKRIO TEXT F1
 DMKSNT ASSEMBLE F1
 DMKSNT TEXT F1
 DMKSPLCL CNTRL F1
 DMKSYS ASSEMBLE F1
 DMKSYS TEXT F1
 IOBLOKS AUXPTFS F1
 IOBLOKS S13318DK F1
 R;

 You must examine each of those files to decide whether you need to copy it
 to your new A-disk.

 PAGE 28

 Control files almost never change except with a new release, and the "Memo
 to Users" will tell you if they do. So, first thing, copy over your
 control file:

 copyfile dmksplcl cntrl f = = a (olddate

 It is worth mentioning here that you should make a habit of using the
 OLDDATE option of COPYFILE; it's a very simple way to "leave tracks". You
 should also make a habit of using the REPLACE option as seldom as possible
 and of always using the TYPE option when you do. At least you'll know then
 that you've just replaced something that you really wanted to keep.

 I would like to suggest that you not copy any of the textfiles or maclibs.
 It is safer to rebuild them with new VMFASMs and VMFMACs. Start with your
 macro and copy section changes. You have only one, in this case, that fix
 that hit IOBLOKS, VM13318. If LISTFILE shows no S13318DK files on your
 service disks, then you need to carry this fix forward and rebuild your PTF
 maclib:

 copyfile iobloks * f = = a (olddate type
 COPY 'IOBLOKS AUXPTFS F1' to 'IOBLOKS AUXPTFS A1' (NEW FILE).
 COPY 'IOBLOKS S13318DK F1' to 'IOBLOKS S13318DK A1' (NEW FILE).

 copyfile dkptfmac exec f = = a (olddate

 vmfmac dkptfmac dmksplcl

 This will incorporate any new fixes to IOBLOKS which are on the new PUT.

 Next, copy over the source for your sysgen modules and reassemble them:

 copyfile dmkrio assemble f = = a (olddate
 copyfile dmksnt assemble f = = a (olddate
 copyfile dmksys assemble f = = a (olddate
 vmfasm dmkrio dmksplcl
 vmfasm dmksnt dmksplcl
 vmfasm dmksys dmksplcl

 The documentation with the PUT is supposed to tell you if these need
 reassembly, but unless you are very cycle-constrained, it is better to be
 safe and reassemble them. I can remember a couple of times when they
 didn't tell us to reassemble DMKSYS when they should have. The resulting
 system failures were remarkably obscure.

 Then, work your way through the rest of the fixes you had applied before to
 see if you still need them. Of course, you still need the rest of VM13318,
 the part that applies to DMKIOS:

 copyfile dmkios s13318dk f = = a (olddate
 copyfile dmkios auxptfs f = = a (olddate
 vmfasm dmkios dmksplcl

 Again, this will pick up any new fixes to DMKIOS from the new PUT.

 PAGE 29

 Looking at the new DMKMSG AUXSP11 file that was loaded up from the PUT, you
 see that VM14782 is on the PUT. That is the fix for the PE against
 VM12684, so you no longer need to remove 12684. If you still needed to
 remove it, though, you would not just copy DMKMSG AUXSP11 from your old A-
 disk. The new DMKMSG AUXSP11 that you just loaded up from the PUT very
 likely would have some additional fixes in it, even if it did not have
 VM14782. Therefore, the thing to do would be to copy that auxfile from the
 new PUT disk to your new A-disk and again comment out VM12684, as before.

 LISTFILE shows you that there is a file DMKVMC S12989DK that was loaded up
 from the PUT, so you no longer need to apply the circumvention for APAR
 VM12989, which, you will recall, was to make DMKVMC resident. If you did
 still need to apply the circumvention, you would copy your CPLOAD S12989DK
 and CPLOAD AUXPTFS files from F to A, check that the update would fit
 properly in the new version of CPLOAD EXEC from the PUT (which might be
 different from earlier versions), and update CPLOAD EXEC from the new PUT
 disk onto your new A-disk, exactly as before.

 That takes care of everything on the old A-disk but X0328. Just as you are
 about to carry forward your temporary local fix for X0328, your mail is
 delivered, and in it you find a letter from IBM informing you that the
 problem has been closed as a suggestion. So, either you discard your fix
 and wait for IBM to implement your suggestion, or you convert your fix into
 a local modification. While I don't want to lead you into temptation, I
 would suggest the latter, if only to give me a chance to illustrate local
 mods.

 If it is going to be a local mod, it should be listed in an AUXLCL auxfile,
 rather than in an AUXPTFS. And, I would suggest naming it something other
 than X0328, say, "DMPZERO0". There are very many schools of thought on
 naming local mods. Most of the old users seem to have developed elaborate
 numbering schemes for their mods. I prefer something mnemonic, with a
 single digit at the end to indicate the level of the mod. Whatever you
 name your mod, you should, as before, mark it with an update identifier:

 FILE: DMKDMP DMPZERO0 A1 ____ ______ ________ __

 ./ * THIS MODIFICATION CAUSES PAGE ZERO TO BE INCLUDED IN DMPZERO0
 ./ * THE DUMP DATASET EVEN IF IT IS ON THE FREELIST. DMPZERO0
 ./ * DMPZERO0
 ./ R 07110000 $ 07110100 100 DMPZERO0
 LTR R7,R3 GET THIS PAGE NUMBER. DMPZERO0
 BZ NXTPAG1 ALWAYS WANT PAGE 0 DUMPED. DMPZERO0

 FILE: DMKDMP AUXLCL A1 ____ ______ ______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXLCL $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$
 DMPZERO0 - 06/23/81 - DUMP PAGE ZERO REGARDLESS - MWV

 You use VMFASM to incorporate your mod and reassemble DMKDMP. This
 produces a file called DMKDMP TXTLCL, which the loader will pick up in
 preference to any files named DMKDMP TEXT or DMKDMP TXTPTFS when you use
 the DMKSPLCL control file.

 PAGE 30

 With that, you have worked your way through all the files on your old A-
 disk, and your new A-disk looks like this:

 listfile * * a

 DKPTFMAC EXEC A1
 DKPTFMAC MACLIB A1
 DMKDMP AUXLCL A1
 DMKDMP DMPZERO0 A1
 DMKDMP TXTLCL A1
 DMKIOS AUXPTFS A1
 DMKIOS S13318DK A1
 DMKIOS TXTPTFS A1
 DMKRIO ASSEMBLE A1
 DMKRIO TEXT A1
 DMKSNT ASSEMBLE A1
 DMKSNT TEXT A1
 DMKSPLCL CNTRL A1
 DMKSYS ASSEMBLE A1
 DMKSYS TEXT A1
 IOBLOKS AUXPTFS A1
 IOBLOKS S13318DK A1
 R;

 With as few files as we had in this example, this procedure is done easily
 enough by inspection. If there were substantially more fixes, however, you
 would need a better mechanism to make sure you really processed them all.
 Many installations have developed EXECs to perform this operation for them.
 IBM provides no tool for this. I had an EXEC myself for a while, but
 ultimately I decided that I really wanted to look at what was happening in
 this part of the process, so I no longer use that EXEC. Now, I copy all of
 the updates and auxfiles from my old 191 to the new 191 and then just use a
 LISTFILE EXEC to step through the auxfiles, erasing auxfiles and updates
 which are no longer needed and making sure that the AUXSP11 files that I
 still need on my A-disk are current. When that is done, I have only to
 reassemble all the modules which still have auxfiles on my A-disk, again
 using a LISTFILE EXEC to drive the process and assure that nobody gets left
 out. This clearly is a matter of taste, though. Do it whatever way is
 best for you, as long as all the fixes you need get carried forward
 correctly.

 PAGE 31

 H. Taking the Actions Described in the PUT Error Bucket H. Taking the Actions Described in the PUT Error Bucket

 Next you should take the corrective measures recommended in the PUT error
 bucket. The bucket will tell you about such things as any bad PTFs known
 to be on the PUT, any changes to program products known to be required
 because of changes to CP or CMS in this PUT, any PUT packaging errors that
 have been reported, and other information that you need to have before you
 put this PUT into production. When the bucket comes, you should read
 through it carefully, taking the actions it recommends, and marking them
 off as you go. The buckets tend to be huge and ugly and formidable-
 looking, but they are important, so you need to learn to understand them.
 After reading a few buckets, you will come to recognize the unimportant
 parts and be able to skip over them quickly to get to the useful parts.

 The bucket is divided into a number of subsets, one for each component, CP,
 CMS, DIRMAINT, RSCS, etc. Each subset contains three sections which may be
 of interest -- Documentation Changes, General Information, and Service
 Recommendations.

 The Documentation Changes sections seldom have anything in them. When they
 do, they mainly tell you about misinformation in the Memoranda to Users
 from the PUT. Read these comments and note them.

 The items in the General Information sections are almost all things you
 need to know. Most of the items there are directions for fixing up
 packaging errors on the PUT. The descriptions of the actions you need to
 take are generally reliable, although skimpy. They assume you know how to
 do the sorts of things I've been talking about. They may tell you, for
 example, to remove a certain bad fix, or to edit an auxfile and reassemble
 some module to pick up a fix they left out, or to generate such-and-such a
 CMS module which they forgot to regenerate after they updated the
 textfiles.

 Other items in General Information may tell you that one of the sysgen
 modules (DMKRIO, DMKSNT, or DMKSYS) needs to be reassembled because of a
 change to a macro on this PUT. There may also be notes telling you about
 new permanent restrictions or warning you to apply some important
 corrective fix. The information in this section is generally reliable.
 When it tells you to do something, you should do it. It will usually be
 reasonably clear whether the item applies to you or not.

 One particular class of General Information items you should be aware of is
 notes telling you to apply a certain fix to some component, say, DIRMAINT,
 when you apply the PUT service to CP or CMS. They do not usually tell us
 about these "co-requisites", but when they do, they mean it. Take careful
 note of such advice.

 The Service Recommendations sections are the part of the bucket that you
 will find hardest to digest. These sections are essentially just dumps of
 APARs from RETAIN. This is a typical example:

 PAGE 32

 +--+
 | APAR NUMBER = VM13499 LAST UPDATE = 81/09/23 |
 | PTF IN ERROR = UV03973 PIN = YES |
 | CURRENT APAR STATUS = CLOSED CLOSING CODE = PER |
 | ORIGINAL APAR NUMBER = SECURITY/INTEGRITY = NO |
 | SERVICE NUMBER = X401302- |
 | REPORTED COMPONENT = 5749DMK00 RD62 5749 VM/370 CP |
 | FIXED COMPONENT = 5749DMK00 5749 VM/370 CP |
 | FAILING MODULE = DMKFRE |
 | PROBLEM ABSTRACT: |
 | DMKCPU USES WRONG REG AND WRONG INSTRUCTIONS WERE IN DMKFRE |
 | REPORTED SCP RELEASE: D62 |
 | ERROR DESCRIPTION: |
 | APPLICABLE PTFS: PE03973-T8104, PE03974-T8104 |
 | VM12596 DMKCPU FIX USES REG4 TO STORE THE CPEXBLOK ADDRESS INTO |
 | THE FREE STORAGE BACK POCKET DMKFREAP 'CPUFREAP'. REG10 READ |
 | ADDRESS IS THE REGISTER LOADED WITH THE ADDRESS OF 'CPUFREAP', |
 | AND IS THEREFORE THE CORRECT REGISTER TO USE FOR THE STORE. |
 | ALSO, THE DMKFRE FIXES FOR R060, RD61, RD62 ARE INCORRECT. THE |
 | WRONG INSTRUCTION WAS REPLACED. |
 | TEMPORARY FIX: |
 | PRE-REQ APAR IS VM12596 |
 | FIX FOR WRONG REGISTER USAGE IN DMKCPU: |
 | FILE: DMKCPU R13499DK FOR R060 |
 | ./ R 426500 $ 426600 |
 | ST R1,4(,R10) PUT CPEX POINTER IN DMKFREAP @VA13499 |
 | **** END OF REL6 FIX**** |
 | FILE: DMKCPU S13499DK FOR RD71 |
 | ./ R 4317000 $ 4318000 |
 | ST R1,4(,R10) PUT CPEX POINTER IN DMKFREAP @VA13499 |
 | **** END OF VM/SP FIX **** |
 | FIX FOR DMKFRE FOR R060: |
 | FILE: DMKFRE R13499DK |
 | ./ R 758100 $ 758100 |
 | ICM R2,B'0111',DMKFREAP+1 ADDR OF BACKPOCKET @VA13499 |
 | ./ R 762000 $ 762100 |
 | L R1,DMKFREAP+4 GET ADDR OF CPEX FROM FREAP @VA13499 |
 | **** END OF R060 FIX **** |
 | PROBLEM SUMMARY: |
 | VM12596 - DMKCPU FIX USES REG4 TO STORE THE 'CPEXBLOK' ADDRESS |
 | INTO DMKFREAP INSTEAD OF REG10. THE DMKFRE FIX FOR R060 IS ALSO |
 | INCORRECT: THE WRONG INSTRUCTION WAS REPLACED. |
 | AFFECTED USERS: AP AND MP USERS ONLY |
 | RECOMMENDATION: APPLY APAR TEMPORARY FIX |
 | PROBLEM CONCLUSION: |
 | DMKCPU WILL BE CHANGED FOR R060 AND RD71. DMKFRE WILL BE |
 | CHANGED FOR R060. |
 | MODULES/MACROS: DMKFRE DMKCPU |
 | SRLS: NONE |
 | CIRCUMVENTION: |
 | APPLICABLE COMPONENT LEVEL/SU: |
 | ENV=060 PS=Y PTF=UV04522 OPEN AVAIL=NO VOLID= |
 | ENV=D71 PS=Y PTF=UV04523 OPEN AVAIL=NO VOLID= |
 +--+

 PAGE 33

 You have got to work your way through these APARs, deciding what to do
 about each one. There are some clues. Each of them has an "AFFECTED
 USERS" line (toward the end and very hard to spot). In this case, it says
 "AP AND MP USERS ONLY". This field frequently says "ALL" when the fix
 really doesn't apply to all installations. In fact, when this particular
 APAR was first entered into the bucket, it said that all users were
 affected, even though the fix is to DMKCPU, which is not even listed in the
 UP loadlists. But, if the "AFFECTED USERS" field says "MP-ONLY" and you
 have a UP, or if it says "FBA-ONLY" and you have only CKD devices, then you
 are safe in skipping that item. In other cases, the problem description
 will make it clear that you are not impacted. For example, if it is a fix
 for a problem in IUCV and you know that you are not using IUCV, then you
 can skip that one, too. You should be aware that some of the APARs in the
 Service Recommendations sections are marked "HIPER", which is supposed to
 mean that this is a high-impact problem. This is a new designation, and so
 far it has not been terribly accurate, but it does give you some guidance.

 When you decide you have to do something about an APAR in the Service
 Recommendations section, you may have several options. Look at the "PTF IN
 ERROR" line, the "RECOMMENDATION" line, and the "CIRCUMVENTION" line.
 There is very seldom anything given as a circumvention, but if there is, it
 is likely to be something relatively safe and easy to do, such as making a
 module resident. If there is no circumvention, you may have the choice
 between applying this fix and removing some bad fix that this one is
 supposed to correct, the one mentioned as the "PTF IN ERROR".

 You should keep in mind that the fixes in the bucket are for the most part
 even less well-tested than the fixes on the PUT, so you are asking for
 trouble if you just blindly apply them all, even if that is what the
 "RECOMMENDATION" fields tell you to do. If this APAR is a fix for a "PTF
 in Error" ("PE"), you may be better off just pulling the bad PTF, rather
 than installing this APAR. To pull off the PE, the first thing you have to
 do is figure out the APAR number that corresponds to the PTF number given
 in the "PTF IN ERROR" line. All VM fixes have both an APAR number
 ("VMnnnnn") and a PTF number ("UVmmmmm"). VM fixes are named according to
 their APAR number, rather than their PTF number, and VM APARs are never
 superseded by PTFs, as VS PTFs are. Therefore, in VM, PTF numbers convey
 no information to the user, but IBM puts the PTF numbers in the VM buckets,
 rather than the APAR numbers, because what's good for MVS is good for VM.

 Given the PTF number for the PE, here is how you find out its APAR number,
 so you know its filetype, so you can remove it. If you are lucky, the
 "PROBLEM DESCRIPTION" field will reference the bad fix by its APAR number,
 as it does in this case, VM12596. Or, the bad fix may be listed as a "PRE-
 REQ APAR", as it is here. If not, you could just call Level One and ask
 them what the APAR number is for PTF UV03973. Or, if you have INFO/DATA,
 you could look up the PTF number there; the command is this case would be
 "S E UV03973".

 PAGE 34

 If you don't have INFO and you don't want to call the Support Center, you
 can try a little detective work. A reasonable assumption is that the PE
 probably hit at least some of the modules that the fix for the PE hits.
 You have the fix for the PE sitting there in front of you. So, look at the
 AUXSP and AUXSP11 files for the modules the fix applies to; you will
 probably find the PTF number of the PE listed in one of them. The APAR
 number will be on the same line, because it is included in the name of the
 update, S12596DK. Now that you know the APAR number of the bad fix, you
 can find out what the original problem was that it was trying to fix. Look
 up the APAR number in Early Warnings and read the problem description. (Of
 course, if you phone the Support Center to find out the APAR number, you
 can also ask them to read you the problem description. Similarly, if you
 look up the PTF number in INFO, that will also give you the problem
 description.)

 If you decide that the original problem is not one that you have had, it
 may well be that you will get more stability from removing the bad fix than
 you will get from applying the fix for the bad fix. If you decide to
 remove the bad fix, you go through the same process that we went through to
 remove the bad fix to DMKMSG earlier. You use LISTFILE to find all the
 macros and modules which are hit by the PE. You copy the AUXSP11 (or
 AUXSP) auxfiles for those macros and modules from the service disk to your
 A-disk, and you edit the A-disk copies of the auxfiles to comment out the
 bad fix. If the bad fix hits any macros, you add the macros to your
 DKPTFMAC MACLIB by adding entries for them to DKPTFMAC EXEC and issuing the
 VMFMAC command to rebuild the maclib. (You could update the macro by hand
 and then add the updated macro to DKPTFMAC with the MACLIB ADD command, but
 your PTF macro libraries will generally be so small that it will be very
 inexpensive to rebuild them from scratch when you need to make any change
 in them. And a problem with using MACLIB ADD to add a macro to a maclib is
 that it is so easy then to forget to add the name of that macro to the EXEC
 for that maclib. This means that the next time you rebuild that maclib
 from scratch, you will lose the new macro and the service that was on it.)
 Once you have the auxfiles and the maclib in order, you use VMFASM to
 reassemble all the modules that were hit by the PE.

 If, on the other hand, you decide that you really should apply the fix
 given in the bucket, you use the same procedure that we used earlier in
 applying the fix for the hungusers problem. First, key in the update files
 from the bucket. Then, create (or update) an AUXPTFS auxfile for each
 macro and module hit by the fix. If any macros are involved, add them to
 DKPTFMAC, in the usual way. Then use VMFASM to assemble the modules and
 create TXTPTFS files on your A-disk.

 That is all you do with the APARs in the Service Recommendations sections
 of the bucket -- skip them, apply them, or pull the PEs they are supposed
 to fix. There is another bucket you need to check, however, the one from
 VMSHARE. There are generally a series of files on VMSHARE which discuss
 current problems with the system. For SP, these have been named PROB
 1SP00, PROB 1SP01, etc., to correspond to the various service levels. Read
 all these buckets, since they are not cumulative. You may not need to
 apply all the service that is recommended there, but many of us have found
 that that is the safest course for us.

 PAGE 35

 I. Carrying Forward Your Local Mods I. Carrying Forward Your Local Mods

 We did not have any local mods on the old 191 disk in this example. If we
 had, they would now need to be copied to the new 191. The process here is
 really just the same as it is with locally-applied service. Copy over the
 AUXLCL auxfiles and the local updates. Rebuild DKLCLMAC MACLIB, using
 VMFMAC with the DMKSPLCL control file. Then reassemble the modified
 modules, using VMFASM and the DMKSPLCL control file.

 With enough effort, you could probably figure out that some of the old
 TXTLCL files could just be copied forward, because those modules had not
 received any new service. I would advise against this approach, though,
 because the checking required is really substantial. You would have to be
 sure that the macros used by those modules also had not received service
 that would require a reassembly. And, if you were to miss just one module
 that really needed reassembly, you would have built yourself a very obscure
 problem to debug.

 In carrying forward your local mods, you need to check, of course, that
 they still fit in IBM's code after the new service has been applied. It
 will be well worth your time to read through the APAR descriptions in the
 Memo to Users, looking for fixes which sound as if they might hit areas you
 have modified. Fortunately, you can count on UPDATE and the assembler to
 find most of the conflicts between your mods and the new service for you.
 So, the first step is the VMFASMs I suggested above. Check very carefully
 for both UPDATE sequence error messages and assembly error messages. When
 you have all of those fixed up, you really should examine all the mods in
 the new listings to make sure they still make sense, but this is so tedious
 that I suspect that many of us skip that step and just rely on functional
 testing to make sure our mods are all still working. Certainly, it is
 worth spending some time building yourself a testing EXEC that exercises
 all your mods. You may also want to consider modifying the VMFASM EXEC so
 that it will not go on and do the assembly when there is an UPDATE error.
 This will make UPDATE errors much more conspicuous. Many of the old-timers
 are of the opinion that this is how VMFASM should work. So far, we've not
 been able to convince IBM of that, however.

 PAGE 36

 J. Testing a New Version of CP J. Testing a New Version of CP

 Having done all this, you are ready to test your new version of CP.

 I'm pretty well convinced that the primary reason that VM still lives is
 the fierce loyalty of the VM system programmers and that the primary reason
 for their loyalty is that VM means never having to take standalone test
 time at 6 A.M. on Saturday.

 +--+
 | RULE NUMBER FIVE |
 +--+
 | VM SYSTEM PROGRAMMERS DO IT VIRTUALLY ALL THE TIME |
 +--+

 It is my impression that most experienced VM installations never schedule
 standalone test time for CP. A new version of CP can be tested quite
 thoroughly running in a virtual machine. It will take you a little effort
 to learn how to do this effectively, but the effort will be repaid many
 times over. A good place to start is by reading the chapter on running VM
 under VM in GC19-6212, "Operating Systems in a Virtual Machine".

 If you are new to VM system programming, you will also need to spend some
 time learning to read dumps interactively using the DUMPSCAN facility of
 IPCS or Amdahl's ANALYZE (if you are lucky enough to be able to get hold of
 it). DUMPSCAN is a frustratingly primitive facility, but, even so, it can
 greatly enhance your productivity. Spend a little time learning to read
 dumps interactively, and you'll soon be refusing to look at paper dumps.

 K. Putting a New Version of CP Into Production K. Putting a New Version of CP Into Production

 Finally, you are ready to build and install a production CP nucleus at the
 new PUT level. The mechanisms you use are exactly the same as the ones you
 use in building and installing a new nucleus to incorporate a single fix.

 Even after you have this PUT in production, you should order a new copy of
 the bucket every once in a while and go through it to see if any more
 problems have been discovered. How often you need to do this depends on
 how stable your system is. In the early days of SP, when things were very
 unstable, I checked the bucket every week. Fortunately, at that time, the
 bucket was in a format which allowed Level One to tell us easily whether
 there had been any important changes since we last got a bucket. It is no
 longer possible for us to phone Tampa or Chicago and just ask what is new
 in the "hotlist", but I hope this situation will be remedied someday.

 PAGE 37

 V. Converting to a New Release of CP V. Converting to a New Release of CP

 Once you have a VM system up and running, installing a new release of VM is
 exactly the same process as installing a new PUT, so don't let them trick
 you into thinking that you ever have to use that nasty starter system
 again. The steps we have just gone through to install a new PUT are the
 same steps you need to take to install a new release. Essentially, all you
 do is load up the tape, do whatever the bucket tells you to do to fix it
 up, apply any old corrective service you still need, and then apply your
 local mods.

 A. Loading Up the Base Tape (and Possibly a Service Tape) A. Loading Up the Base Tape (and Possibly a Service Tape)

 I cannot give you the exact commands you will need for loading up the new
 release, because the tape formats tend to be different with each new
 release. The documentation with the tapes may be sufficient to enable you
 to find the files you need. If it is not, use VMFPLC2 (or whatever they
 call it next time) to scan the tapes and show you what is there. For CP,
 you need to find a file with source and macros and a file with textfiles.
 (When we went to Release 6, the only place on the distribution tapes that
 we could find the textfiles was on a minidisk in the starter system!
 Apparently, they thought that people actually use the starter system to go
 to a new release. We can hope that they will remember the shrieks of pain
 and outrage and not do that to us again for a while.) The control files,
 loadlists, and maclibs for CP will also be somewhere on the tapes. Once
 you have found all these, get yourself a new base minidisk (like 195 in our
 canonical layout) and load all the CP files up onto it.

 New releases tend to be pretty badly back-levelled on service, so, unless
 you are really desperate to get onto the new release for some reason, wait
 at least until the first service tape arrives. When it does, get yourself
 a new PUT minidisk and load the CP service up onto it.

 B. Doing What the Bucket Says B. Doing What the Bucket Says

 Either way, get yourself a bucket and take a look at the subset which
 describes problems in installing the new release. Get yourself a new A-
 disk and do whatever fixups the bucket suggests. Then start working your
 way through the task of carrying forward old corrective service and local
 mods.

 PAGE 38

 C. Carrying Forward Old Corrective Service C. Carrying Forward Old Corrective Service

 Since even with a service tape the new release may be back-levelled, it
 would be a good idea for you to make yourself a list of all the corrective
 service you have had to apply in the past six months. Work your way
 through the list deciding which of those fixes have been picked up for the
 new release and which have not. Then phone the Support Center and ask for
 new versions of all the old fixes which have not yet been picked up. Do
 not try to update these fixes yourself; the Support Center will generally
 send you tapes of the updated fixes within a week or so of your asking for
 them.

 D. Carrying Forward Your Local Mods D. Carrying Forward Your Local Mods

 Moving your mods into the new release is much like moving them into a new
 PUT. It may be complicated, however, by the base ASSEMBLE files having
 been resequenced. If that happens, the sequence numbers in your mods will
 need reworking, even if the logic doesn't. You should be aware of a very
 useful program on the Waterloo tapes, the extended COMPARE command from
 Cornell. One of its many functions is to prepare a resequenced update file
 when it is given an old ASSEMBLE file, an update to that file, and a new,
 resequenced ASSEMBLE file. I would still be trying to get to SP if it were
 not for this program.

 E. Compatibility Problems E. Compatibility Problems

 The one real complication you may encounter is release-to-release
 incompatibilities, most likely in spool files or the directory. We have
 been telling IBM for a long time that we must be able to go back and forth
 between releases without doing cold starts and without rebuilding our
 directories. The user community has traditionally built and distributed
 the modifications necessary to achieve these goals. In the Release 6 to SP
 conversion, IBM finally came through with a PTF to allow us not to do cold
 starts either when installing SP or when backing out of it. They still did
 not achieve directory compatibility, but the users did, and there is hope
 that IBM will next time. You can expect to find directions for use of any
 compatibility PTFs in the install bucket for the new release. Changing the
 size of, say, the SFBLOK without cold starting is a tricky process, so
 follow the instructions very carefully.

 PAGE 39

 VI. Advanced Nucleus Theory VI. Advanced Nucleus Theory

 A. Building and Delivering a CP Nucleus A. Building and Delivering a CP Nucleus

 To build a CP nucleus, you just spool your punch to yourself and invoke
 VMFLOAD to punch to your reader a big file containing the CP loader
 followed by all the textfiles for the nucleus. At some point you deliver
 the nucleus to your sysres by IPLing that loader file. IPL gives control
 to the loader; and the loader reads in the rest of the deck, link-edits the
 whole thing together, and prints the loadmap. It then passes control to
 DMKSAVNC, which writes the nucleus out onto the sysres volume described in
 DMKSYS.

 There are several different ways to go about accomplishing this delivery of
 the nucleus:

 1. Perhaps the most common delivery method is to move that reader file to a
 tape and later IPL the loader from that tape into the real machine to write
 the nucleus to the real sysres:

 tape rew
 filedef input reader
 filedef output tap1 (recfm f lrecl 80 block 80 den 1600
 movefile input output

 Either VMSERV or GENERATE can also be used to create an IPLable nucleus
 tape.

 2. Or, as in our earlier examples, you can just get write access to the
 real sysres and IPL that reader file in your virtual machine to write the
 nucleus out onto your real sysres. This is risky enough that I would
 advise against it, however, until you feel that you really understand what
 is going on.

 3. You can also set up a virtual sysres on a minidisk, giving it the same
 address and volid as the real sysres and CP-allocating it. You then IPL
 that reader file in your virtual machine, and the loader writes the new
 nucleus onto the virtual sysres. After you have tested the new nucleus in
 your virtual machine and are happy with it, you can use DDR COPY NUC to
 copy it from your virtual sysres to the real one. A somewhat less gutsy
 approach is to use DDR DUMP NUC to move the nucleus from the virtual sysres
 to tape, after which you shut the real system down at some point and
 install the new nucleus using the RESTORE NUC function of standalone DDR.

 4. You can use RSCS to send your reader file to a virtual reader on another
 real machine and then use one of these three methods to install the nucleus
 on that machine.

 PAGE 40

 I have used all of these approaches myself and currently use different ones
 for different systems. I would advise you to start with one of the
 approaches that doesn't involve writing on the real sysres while the system
 is up and running. I will be discussing the perils involved in doing that
 shortly. I do recommend that which ever way you deliver your new nucleus
 to your real sysres, you first load every new CP nucleus to a virtual
 sysres and IPL it from there. It's so humiliating to have the operators
 tell you that you've given them a new system that won't even IPL.

 B. Defining A V=R Area: DMKSLC B. Defining A V=R Area: DMKSLC

 If you build your nucleus "by hand" or with your own build EXEC and you
 want to have a V=R area in your system, be sure that you have generated a
 DMKSLC textfile. (You must also, of course, use a loadlist which lists
 DMKSLC.) DMKSLC comes right after DMKPSA (page zero) in the CP nucleus.
 "SLC" stands for "set location counter", which is precisely what DMKSLC
 does. It moves the location counter from the beginning of page one to the
 end of the V=R area, which is just a big hole in your CP nucleus. You use
 the VRSIZE command to generate DMKSLC:

 vrsize
 VIRTUAL=REAL OPTION REQUIRED (YES,NO):
 yes
 STORAGE SIZE OF VIRT=REAL (MINIMUM IS 32K):
 5m
 STORAGE SIZE OF VIRT=REAL (MINIMUM IS 32K):
 5120k
 05120K STORAGE SIZE FOR VIRTUAL=REAL
 IS THE ABOVE ENTRY CORRECT (YES,NO):
 yes
 R;

 l dmkslc (d
 FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME
 DMKSLC TEXT A1 F 80 3 1 1/16/82 14:24:57
 R;

 Just reply to the questions, and VRSIZE will build a file called DMKSLC
 TEXT. As you can see, you must tell it the V=R size in K, rather than M --
 very unfriendly. You need do this only once, as long as you don't want to
 change your V=R size, and you may keep around different DMKSLC textfiles
 for different purposes. For example, I keep two versions of DMKSLC on my
 MAINT A-disk, DMKSLC TXT3033, which defines a 5-meg V=R for my 3033, and
 DMKSLC TXTTST, which defines a 2-meg V=R for my test system.

 PAGE 41

 C. Detecting Nucleus Overflow C. Detecting Nucleus Overflow

 One of the hazards of building CP nuclei is the problem of "nucleus
 overflow". There is no check made for whether the nucleus is too big for
 the DASD space you've set aside for it. In fact, you specify only the
 starting cylinder or block for your CP nucleus in DMKSYS. The system
 neither knows nor cares where you intend for the nucleus to end. DMKSAVNC
 starts writing the nucleus at your starting point and keeps writing until
 it's done. If it goes too far, whatever comes next on that volume is
 quietly destroyed.

 Early in SP, IBM came out with a very friendly fix to DMKSAV which tells
 you exactly which cylinders or blocks the nucleus has been written on. You
 should certainly always check that message. But, since there's a chance
 that you might overlook it, you should also adopt one of the old-timers'
 strategies for detecting nucleus overflow.

 One good strategy is to lay out your virtual sysres so that the I/O error
 recording area is immediately after the CP nucleus. Then, when you load
 your new nucleus onto your virtual sysres, if the nucleus overflows, it
 will overlay the error recording cylinders. Since CP initialization
 carefully checks to make sure that the error recording area is properly
 formatted, you will get the message:

 DMKIOG552I FORMATTING ERROR RECORDING AREA

 when you IPL your virtual sysres under these circumstances. Then you know
 not to install on your real sysres without first rearranging it a bit.

 There is another easy way to detect nucleus overflow. When you IPL the
 loader reader file in a virtual machine, you must have the sysres volume
 (whether virtual or real) defined as a minidisk to your virtual machine.
 If you define that minidisk as ending at the end of the nucleus area, then,
 if the nucleus overflows, you will draw I/O errors when DMKSAV tries to
 write beyond the end of the minidisk. Again, you are warned that you have
 a problem.

 PAGE 42

 D. Backing Your Nucleus Up D. Backing Your Nucleus Up

 The most important part of building a new CP nucleus is backing up the
 previous nucleus, so that you will be able to back out of the new one.

 +-------------------+
 | RULE NUMBER SIX |
 +-------------------+
 | BACK IT UP |
 +-------------------+

 Two of the delivery methods I described just now involved your writing the
 nucleus to tape. If you do it yourself, then you will know it really got
 done and you will know what tape the nucleus is on. If you deliver your
 nucleus direct to the sysres, rather than writing it to tape, make sure
 that your operators have good system backup procedures and that they really
 follow them.

 +---------------------+
 | RULE NUMBER SEVEN |
 +---------------------+
 | BACK IT UP AGAIN |
 +---------------------+

 Keep more than one nucleus backup tape. Set up your backup procedures to
 use a rotating pool of several tapes on which to dump new nuclei in turn.
 (We find ten to be a good number.) And when you really screw things up,
 you will be happy that you have dumped your MAINT A-disk out onto the
 backups too, following the nucleus. That way, when you back out to an old
 nucleus, you can also back your A-disk up to the state it was in at the
 time you built the good nucleus, if you need to.

 +---------------------+
 | RULE NUMBER EIGHT |
 +---------------------+
 | DON'T TRUST DDR |
 +---------------------+

 Sad to say, DDR has been very unreliable ever since we went to SP. PUT
 8209 includes forty-six fixes to DDR, most of which represent situations in
 which somebody's backup tapes were no good. I am not saying not to use DDR
 -- we really have no choice -- I am just saying not to trust it.
 Thoroughly test every DDR procedure you establish, to make sure that DDR
 works with the particular combination of devices and commands that you are
 using. And don't believe that DDR is working just because it says it is.
 Restore whatever it is to another volume and compare the restored data with
 the original data. Also, if part of the procedure calls for using DDR
 standalone, then test it standalone; IPLing DDR in a virtual machine is not
 the same as IPLing it in a bare machine. And be VERY suspicious of new
 service for DDR. DDR is like CPEREP; if you find a version that you like,
 stick with it, or, at least, keep a copy of it around for use in
 emergencies.

 PAGE 43

 E. Logging and Numbering Your Systems E. Logging and Numbering Your Systems

 A good system log, whether in the form of a CMS file or of an old-fashioned
 logbook, can be invaluable when things start going wrong. There should be
 one place where your installation logs the time and date of all system
 changes, both hardware and software. When you install a new CP nucleus or
 make any change to CMS, you should log that fact and include a detailed
 description of your changes, including APAR numbers, etc.

 Many installations find it useful to number their CP nuclei. In the case
 of my own installation, the system number is recorded in the system log, of
 course, but it is also recorded in the CP nucleus itself to help keep dumps
 straight. This number is displayed at IPL time, and there is an operator
 command to display it as well. Our nucleus build EXEC automatically
 increments this number and reassembles DMKCPE, which is where the number is
 kept. I have included this very simple modification in an appendix in the
 handout.

 F. Archiving Your Load Maps F. Archiving Your Load Maps

 Archive your CP (and CMS) loadmaps in some orderly way, so that you can
 retrieve them for use in looking at dumps and documenting problems. If
 DASD or tape space for archiving loadmaps is a problem for you, then you
 can discard the loadmaps for systems that don't produce any dumps or other
 problems. If you make a practice of numbering your system builds, then
 name the loadmap disk file accordingly, as NUC175 MAP, say; otherwise, name
 it according to its build date. Before you put a new CP into production,
 make sure that you have already sent a copy of the loadmap to your IPCS
 virtual machine.

 The loader creates the loadmap while it is building the nucleus. If you
 are planning to do the build on a bare machine, first IPL the loader file
 in a virtual machine to get a copy of the loadmap. (Remember to spool your
 reader HOLD, so that you don't lose the loader file.) Even if you don't
 have a virtual sysres to load the new nucleus onto, you can trick the
 loader into creating a loadmap spool file. By the time it has discovered
 that it has no sysres on which to write the nucleus, it will already have
 built the loadmap in your virtual printer. So, just close the printer
 after it tells you it got an I/O error trying to write out the nucleus.

 PAGE 44

 G. Unresolved References G. Unresolved References

 Part of what the loader does, of course, is resolve all the external
 references from one nucleus module to another. Ideally, there should be no
 unresolved references. You can find out whether there are by looking at
 the end of your nucleus loadmap. If there are any unresolved references,
 you had better find out why, because there is a good chance that your
 system is missing function and also a good chance that it will branch to
 zero now and then. The one time that you neglect to check the unresolved
 references before putting your nucleus into production will be the one time
 you manage to build a nucleus with no DMKSNT in it. I speak from
 experience.

 +-----------------------------------+
 | RULE NUMBER NINE |
 +-----------------------------------+
 | CHECK THE UNRESOLVED REFERENCES |
 +-----------------------------------+

 Unfortunately, you may find that your CP nucleus has some references which
 are supposed to be unresolved. In VM/SP Release 1, you may have three such ________
 unresolved references. If you build a system without a V=R area,
 references to DMKSLC will be unresolved. If you don't specify a NAMENCP
 macro in DMKSNT (because you don't have a 370X), then you will get an
 unresolved reference to DMKSNTRN. If you don't specify a NAME3800 macro in
 DMKSNT (because you don't have a 3800 printer), then you will get an
 unresolved reference to DMKSNTQN.

 Unresolved references can be a real problem, because it is so easy, when
 you are supposed to have seven of them, to overlook the eighth one that
 sneaks in -- until it crashes your system, of course. But, suppose you
 decide that having all these unresolved references is slovenly and
 dangerous, and that you are going to do a little mod to artificially
 resolve all the references you normally have unresolved. It sounds good,
 but if you do it, you are likely to find your system crashing all over the
 place. This is because our friends the developers have a nasty habit of
 using the fact that an ADCON is all zeroes as a flag. If you resolve the
 reference to something other than zero, they decide that you are using that
 function. You can trick them, however, by resolving such references to
 zero.

 Larry Brenner of Cornell has written a very nice little program called
 NUCMAP, which is available on the Waterloo tapes. NUCMAP reads a loadmap
 spool file and creates two small disk files containing the names and
 addresses of all the modules in that nucleus, sorted alphabetically in one
 file and numerically in the other. At the same time, NUCMAP displays all
 the unresolved references on the console. I find that this is a good,
 quick way of checking for unresolved references; you might too.
 Incidentally, when you are "fixtesting" a new fix, it is a good idea to
 check for any new unresolved references introduced by the fix and to
 complain if there are any.

 PAGE 45

 H. The Small CP Nucleus Option H. The Small CP Nucleus Option

 You may want to consider using the small CP nucleus option. The small CP
 nucleus is just a CP nucleus built with a loadlist that doesn't have all
 the modules listed in it. This loadlist is called CPLOADSM EXEC.
 Specifically, the small nucleus doesn't have MSS support, 3340 support,
 AP/MP support, remote 3270 support, SNA support, or the SEPP fast-path
 privop handling for guest SCPs. It can save you quite a bit of memory on
 small systems. In our example, the command to build a small CP nucleus
 would be:

 vmfload cploadsm dmksplcl

 VMSERV will not let you specify that you want to use the CPLOADSM loadlist
 to build your nucleus, but GENERATE will. However, neither of them will
 let you specify your own control file.

 Unresolved references get to be a much bigger problem if you use the small
 CP loadlist, however. Many modules are not there, so you get many
 unresolved references -- dozens of them. This is a real hazard, so I have
 included in an appendix to the handout the mod I use to artificially
 resolve all of the normally unresolved references in my small CP nuclei.

 PAGE 46

 I. Alternate CP Nuclei I. Alternate CP Nuclei

 Sooner or later, you will build a really awful CP nucleus. It will run
 just fine when you are testing it in a virtual machine, but on the real
 machine it will not IPL at all or it will crash as soon as you bring it up,
 every time you bring it up, or it will go straight into a loop every time
 you bring it up. When this happens, you will be called to the machine room
 and told to do something about it, while the operators sneer and crowds of
 angry users mill about, crying for system programmer blood.

 +--------------------------+
 | RULE NUMBER TEN |
 +--------------------------+
 | PLAN ON BACKING IT OUT |
 +--------------------------+

 Certainly, this is a good time to have a sound CP nucleus on a sound tape
 and to know which tape that is. But with all that shouting going on, it
 can take a while to find the tape and load it up. It would be much nicer
 if you had another nucleus online and could just tell the operator to
 change the load address and IPL. Many of the old users have long since
 concluded that the better they can back out, the better their raises are,
 so they have become very good at backing out. That is why one of the most
 common mods floating around among the old users is the "alternate nucleus"
 mod for CP. This mod allows one to have CP nuclei scattered about here and
 there, one per DASD volume, rather than forcing the nucleus to be on the
 sysres volume (the volume with the warm start, error recording, and
 checkpoint areas). My smallest system has two nuclei, the current one and
 a recent one that I liked. My largest system has four nuclei, the current
 one, the one before that, the one before that, and a spare.

 The spare is usually a non-V=R system that I keep around because we can't
 IPL our V=R system in the IBM memory. Sometimes, though, I put a new
 system there with a new I/O configuration. If I want to go away for the
 weekend, for example, and I know that the CEs may not be able to get the
 new gear they are installing on Saturday morning to fly, I just let the
 operators know to IPL 843 if the change goes and to IPL 840 if it doesn't.
 In the early months of SP, I kept a really good old BSEPP nucleus on the
 spare as insurance. That is the one I backed out to so I could go to
 SHARE. If I could have only one mod on my system, this is the one I would
 choose. (The second would be the University of Maine's virtual PER
 support.) The alternate nucleus mod and some examples of its use are
 included in an appendix in the handout.

 PAGE 47

 J. The Perils of SHUTDOWN J. The Perils of SHUTDOWN

 You may have been surprised earlier to hear me suggest that you might
 install a new CP nucleus on your real sysres while your system is up and
 running. On the other hand, you may have been surprised to hear me suggest
 that this is a risky undertaking. All of IBM's higher-level service tools
 (IPF, VMSERV, and GENERATE) behave as though it is perfectly safe to
 install a new CP nucleus while the system is running. But many experienced
 VM shops regard this as altogether too dangerous even to consider doing it.
 In my view, there are two circumstances in which it is reasonable to
 install a new CP nucleus on a live sysres: (1) you don't mind doing cold
 starts or (2) you actually understand what is going on.

 Installing a new nucleus on a live sysres is made possible by the fact that
 during initialization the nucleus modules are read into memory from the
 sysres, and then the pageable ones are written out to paging devices.
 Subsequent references to pageable modules cause them to be brought in from
 the paging area, not from the sysres. So, you are free to write on the
 sysres, except that there is one real gotcha -- DMKCKP, the SHUTDOWN
 module. DMKCKP lives on the sysres. When your system gets shut down,
 either because the operator issues the SHUTDOWN command or because the
 system crashes, DMKCKP is loaded into memory from the device from which the
 system was last IPLed, not from a paging volume. DMKCKP is also loaded in
 from the sysres when you IPL the sysres to do a shutdown and, of course,
 that means any time you IPL CP and it finds that address X'370' still says
 "CPCP". Now suppose that your system is running and you write a new
 nucleus onto the sysres. When something happens to cause your system to be
 shut down, it is the new version of DMKCKP that is going to be brought in
 to shut the old system down, so you had better be sure that the new CKP is
 compatible with the old system.

 There are two major areas in which you may have problems with
 incompatibility between a new DMKCKP and an old nucleus. The first is the
 result of changes in the spooling subsystem. One of the main things
 SHUTDOWN does, of course, is move information about your spool files out to
 the warm start area, so that you can bring your system back up with a warm
 start. If the new system expects the SFBLOKs, the SPLINKs, the RECBLOKs,
 or the ALOCBLOKs to have a different size or shape from that they had in
 the old system, your warm start area is likely to end up full of garbage.
 However, IBM is not going to change these things without telling you, and
 you should avoid changing them yourself and should do it very carefully if
 you must. The only time IBM is likely to make such a change is going from
 release to release. When they have to do this, they generally give us a
 compatibility PTF to change the old system's control blocks to look like
 those for the new. When you build a nucleus to install such a PTF, do not
 shut down the previous system with the new DMKCKP. And, in general, never
 shut down a system with a DMKCKP from another release, whether or not a
 compatibility PTF has been applied. A cold start is the best thing that is
 going to happen to you if you try that. Again, I speak from experience.
 If you have installed a new release and things are going so badly that you
 are unable to shut down before you back out to the old release, hit stop,
 clear memory, and then IPL the old nucleus and do a CKPT start.

 PAGE 48

 The other thing which may make a new DMKCKP incompatible with an old
 nucleus is the fact that CKP must be able to use various control blocks and
 system service routines. If it can't find them, it won't be able to shut
 your system down correctly. Of course, the offsets to these things may be
 different from one nucleus to the next, since the length of various nucleus
 modules may have been changed by new service or mods. So, the new CKP must
 be able to find the things it needs in the old nucleus without using VCONs.
 The way it does this is to use the pointer ARSPPR, which is always at the
 same location in page zero, to lead it to a list of VCONs in DMKRSP. This
 list contains all the external references that DMKCKP needs. And since the
 list is part of the old system, it shows CKP where those items are in the
 old nucleus that it is trying to shut down. This mechanism works perfectly
 well until somebody breaks it -- either you or IBM. If you modify DMKCKP,
 be sure that your mods don't add any EXTRN statements to CKP. If you need
 a new external reference, add it to the end of that list in RSP. IBM has
 been known to break this mechanism itself on a number of occasions, so if
 they ever ask you to fixtest a fix to DMKCKP which introduces an EXTRN
 statement, protest vigorously. SP, as released, has two such EXTRNs in
 CKP, one for DMKRIOCN and one for DMKSYSFL. These have caused a lot of
 systems not to shut down reliably. There is a fix available, VM15048,
 which adds those EXTRNs to the end of the list in RSP and fixes CKP to
 refer to them through that list rather than through its own EXTRNs.
 Caution is required when installing such a fix, however. Assuming that you
 are operating in a mode of installing your new nuclei on the sysres with
 the system running, such a fix or mod should be applied over two separate
 IPLs. You should first build and install a nucleus which adds the items to
 the end of the list in RSP and then later build and install a nucleus which
 changes CKP to expect to find the new items in the list.

 Another caveat: if you increase your V=R size, don't shut the old system
 down with the new DMKCKP. During SHUTDOWN, CKP is loaded into memory at
 X'800' bytes beyond the end of the V=R region specified in the new nucleus.
 You risk either overlaying CKP on top of service routines that it needs (if
 you make the V=R region a little bigger) or overlaying it on top of SFBLOKs
 in free storage (if you make the V=R much larger).

 One of the other perils of SHUTDOWN is simply that it is so buggy. In
 fact, the whole SHUTDOWN/WARM START/CKPT START subsystem is just full of
 bugs, especially in I/O error recovery. The VM community is subjected to
 altogether too many cold starts as a result. The bugs stay there because
 IBM provides us with no means of diagnosing problems in this subsystem.
 When there is a failure in shutting down or starting up, CP is too sick to
 take a dump of itself. IBM doesn't provide its VM customers with a
 standalone dump facility, so it gets very few dumps of shutdown and startup
 failures. If you begin seeing failures of this subsystem, I urge you to
 get hold of a standalone dump program from one of the other SCPs and take
 dumps and report the problems to IBM.

 PAGE 49

 VII. Maintaining Multiple Systems VII. Maintaining Multiple Systems

 A. A Test System A. A Test System

 A situation you are likely to run into sooner or later is one in which you
 have a fix from IBM assembled on your A-disk and you are not yet through
 testing it, but you suddenly have to build a new production system
 immediately because of some hardware change they forgot to tell you about.
 Or, it might instead be a local mod that you are not yet ready to install.
 Either way, getting your A-disk back to where it was before you started
 playing around with that new piece of code, so you can go ahead and build a
 new production system, is a process which can very easily go awry. This is
 why many people keep "accepted" local mods and locally-applied service on a
 disk accessed after the A-disk and keep only the volatile stuff on the A-
 disk. Another tip here is that whenever you are about to do an assembly
 which will end up replacing a textfile on your A-disk, it is a very good
 practice to first rename the old textfile:

 rename dmkiot txtptfs a = oldptfs a

 It doesn't take up much disk space, and you may want it tomorrow.

 A more general solution is to maintain two systems, a production system and
 a test system. To do this, you use the same minidisk layout we have been
 talking about, but you add a new control file:

 FILE: DMKSPTST CNTRL ____ ________ _____

 TEXT MACS DKTSTMAC DKLCLMAC DKPTFMAC DMKSP DMKMAC DMSSP CMSLIB OSMACRO
 TST AUXTST
 LCL AUXLCL
 PTFS AUXPTFS
 TEXT AUXSP12
 TEXT AUXSP11
 TEXT AUXSP

 The only differences here are that we have added DKTSTMAC at the beginning
 of the maclib list and we have added the statement TST AUXTST as the
 highest-level update specification. Then, when you get a questionable
 "fixtest" from IBM, you list it, not in an AUXPTFS auxfile, but in an
 AUXTST auxfile:

 FILE: DMKDSP AUXTST A1 ____ ______ ______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXTST $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$
 S13025DK - 11/04/81 - FIXTEST FOR TAPE I/O COMPLETING AFTER LOGOFF

 PAGE 50

 You treat questionable new mods the same way. You specify DMKSPTST as the
 control file when you assemble the module, so that VMFASM will pick up the
 update from the AUXTST auxfile and build you a TXTTST textfile. When you
 invoke VMFLOAD, you specify DMKSPTST as the control file, and you end up
 with a CP nucleus that incorporates any TXTTST textfiles you may have
 sitting around. And you are in a position of being able to build a
 production system on a moment's notice by using your DMKSPLCL control file,
 so that you don't pick up any of the test versions of textfiles.

 There is another use for the test control file and TXTTST textfiles. You
 may want to have permanently different versions of some modules in your
 test system, particularly if you test by running CP under CP. You may want
 to use a different version of DMKSYS in your test system, for example. In
 this case, you should build yourself an update which modifies your regular
 DMKSYS:

 FILE: DMKSYS VIRTCP0 A1 ____ ______ _______ __

 ./ R 5000 9000 $ 5100 100 VIRTCP0
 SYSOWN VMR901,VMM911,VMM913,VMM916,VMM917 VIRTCP0
 ./ R 11000 12000 $ 11100 100 VIRTCP0
 SYSRES SYSVOL=VMR901,SYSRES=844,SYSTYPE=3350, VIRTCP0*
 SYSCKP=2,SYSWRM=3,SYSNUC=4,SYSERR=6, VIRTCP0*
 ./ R 17000 $ 17100 100 VIRTCP0
 SYSCOR RMSIZE=4M VIRTCP0

 You should list this update in a DMKSYS AUXTST auxfile:

 FILE: DMKSYS AUXTST A1 ____ ______ ______ __

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXTST $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$
 VIRTCP0 - 05/30/79 - DEFINE TEST SYSTEM 'SYSOWN', 'SYSCOR', AND 'SYSRES'

 And you should use VMFASM with the DMKSPTST control file to create DMKSYS
 TXTTST.

 vmfasm dmksys dmksptst

 Note that if your production DMKSYS textfile is named DMKSYS TEXT, then
 VMFASM just erased it for you.

 PAGE 51

 B. The FRE013 Trap B. The FRE013 Trap

 One piece of code that you should definitely have in your test system, even
 if you do not have it in your production system, is the "FRE013 trap". The
 FRE013 trap (or the "FRE018 trap", as the AP/MP version is known) is a mod
 to DMKFRE which validates allocation and de-allocation of blocks of CP free
 storage. The trap abends CP with a FRE013 abend if a CP module tries to
 return a block that is larger or smaller than the block that was originally
 gotten or if a CP module tries to return a block that has already been
 returned. It also abends if the two-doubleword marker that it put at the
 end of the block has been overlaid; this is a good way to catch a function
 that is overwriting memory. In the majority of the cases in which the trap
 takes your system down, your system would have crashed very obscurely a few
 seconds later anyhow, so having the trap there just gets you a dump nearer
 the time of the error. The trap also marks each piece of free storage that
 is given out with its length and the address from which it was requested.
 When a block is returned, this marker is altered to reflect that fact.
 Without this trap or a similar one on your system, it is almost impossible
 to shoot "core cancer" bugs.

 You get the FRE013 trap by phoning the Support Center and asking them to
 queue a request for the "free trap" to Level Two. You should seriously
 consider running this trap in your production system. My impression is
 that most of the old users use it all the time. The arguments against
 using it in your production system are that it uses some extra cycles (less
 than one per cent in my system), that it uses some real memory (about
 thirty pages in my 150-user system), and that, if you have a machine with
 the ECPS microcode, it turns off a portion of that microcode. It makes
 debugging CP a whole lot easier, though, so you are likely to have a more
 stable system if you use it. If the trap's memory utilization is a problem
 for you, you can modify it to add only one doubleword to each block, rather
 than two. If its CPU utilization is a problem for you, you can modify it
 not to set each new block to X'EE's. These two mods and a current version
 (February, 1982) of the FRE013 trap for SP are included in an appendix in
 the handout.

 A note of warning: If you install the FRE013 trap on a system which has
 ECPS, be sure to make the additional changes documented in the trap for
 ECPS systems. If you do not, the results are predictable. I speak from
 experience.

 If you decide to run the FRE013 trap only in your test system, the way to
 do it is to key in the trap and name it DMKFRE FRE013 (or some such), list
 that filetype in a DMKFRE AUXTST auxfile, and build a DMKFRE TXTTST
 textfile, using VMFASM with the DMKSPTST control file. Then, of course,
 you use that control file with VMFLOAD when you build your test system.

 PAGE 52

 C. Systems for Multiple CPUs C. Systems for Multiple CPUs

 Things are going along pretty smoothly for you now, until one day your boss
 comes in and tells you that they are so pleased with your work that they
 are going to give you another VM system to maintain. Don't despair. In
 VM, it is not much harder to maintain two systems than one, and you can use
 one set of service disks to maintain the systems for any number of CPUs.
 The CPUs can be a mix of UPs and dyadics and whatever. They can all have
 different I/O configurations and different logos and anything else you want
 to be different. Maintaining systems for two CPUs is just like maintaining
 one system for production and one system for testing. All it takes is a
 different control file for each CPU. With a unique control file for each
 CPU, you will be able to tell VMFASM to produce unique textfiles for each
 CPU, where that is required, as, for example, DMKRIO. And you will be able
 to tell VMFLOAD to build a unique nucleus for each CPU, incorporating the
 appropriate textfiles. I will illustrate with my own configuration. I am
 currently maintaining three systems (a 3033, a 4341, and a 4331) with one
 set of service disks. To do this, I use three control files:

 FILE: DMKSPPU CNTRL A1 ____ _______ _____ __

 TEXT MACS PUMAC PTFMAC DMKSP DMKMAC DMSSP CMSLIB OSMACRO
 3033 AUX3033
 PU AUXPU
 PTFS AUXPTFS
 TEXT AUXSP11
 TEXT AUXSP

 FILE: DMKSP41 CNTRL A1 ____ _______ _____ __

 TEXT MACS PUMAC PTFMAC DMKSP DMKMAC DMSSP CMSLIB OSMACRO
 4341 AUX4341
 DIST AUXDIST
 PU AUXPU
 PTFS AUXPTFS
 TEXT AUXSP11
 TEXT AUXSP

 FILE: DMKSP31 CNTRL A1 ____ _______ _____ __

 TEXT MACS PUMAC PTFMAC DMKSP DMKMAC DMSSP CMSLIB OSMACRO
 4331 AUX4331
 DIST AUXDIST
 PU AUXPU
 PTFS AUXPTFS
 TEXT AUXSP11
 TEXT AUXSP

 You will note that these three control files differ mainly in having a
 different highest-level update specification. The different control files
 are used to assemble and load CPU-dependent modules for our three machines,
 DMKRIO, DMKSYS, DMKSNT, DMKFCB, DMKBOX (the module which defines the VM
 logo), and our local charging algorithm module, DMKPXJ. So, I have, for
 example, DMKSNT TXT3033, DMKSNT TXT4341, and DMKSNT TXT4331 on my MAINT A-

 PAGE 53

 disk. The other difference between the control files for the three
 machines is that the control files for the two distributed systems contain
 an additional update specification, "DIST AUXDIST", which is used to
 specify a number of local mods that we have found necessary to install only
 on our distributed systems. These mods are mostly fixes to make it easier
 to run an unattended system -- little things like not letting DMKDID fill
 up all of memory with messages about intervention being required on a
 printer.

 You may find yourself getting carried away with making your systems
 different from one another, because it is so easy to do. You'll end up
 confusing both yourself and your users, though, so try to keep it under
 control. But, if you have multiple CPUs, you must be prepared to have some
 differences between them. For example, I have found myself in the
 situation of badly needing a certain PTF on the 4331 and not being able to
 install that PTF on the 3033 because it broke a function that was being
 used only on the 3033. In that case, I commented the PTF out of the
 AUXSP11 auxfiles and listed it in AUX4331 auxfiles, until I could get the
 problem it caused on the 3033 straightened out.

 Many of us have concluded that the cleanest way to build different sysgen
 modules for different CPUs is to build a skeleton ASSEMBLE file, like this
 DMKRIO ASSEMBLE file:

 FILE: DMKRIO ASSEMBLE A1 ____ ______ ________ __

 RIO TITLE 'DMKRIO - PRINCETON UNIVERSITY: VM/SP RELEASE 1'
 COPY OPTIONS
 DMKRIO CSECT
 END DMKRIO

 and to build a large update to this file for each of our CPUs, listing
 these updates in the CPU-specific auxfiles, of course. One of the
 advantages to this approach is that you don't end up with a DMKRIO TEXT for
 VMFASM to erase behind your back, but, rather, in my case, DMKRIO TXT3033,
 DMKRIO TXT4341, and DMKRIO TXT4331.

 Another tip given to me by a friend who maintains systems for many CPUs is
 that he finds it useful to rearrange his loadlist so that the CPU-dependent
 resident modules are located at the end of the resident portion of the
 loadlist, just before DMKCPE. This has the advantage of making most of the
 module addresses the same for all of his systems (modulo any differences in
 V=R size, of course).

 D. Maintaining Distributed Systems D. Maintaining Distributed Systems

 Since I mentioned unattended, distributed systems above, this might be a
 good place to go into what I've learned about maintaining such systems.
 When your boss tells you he's giving you a distributed system, be sure to
 let him know he's also got to give you a terminal which will access that
 system. Even if the system is only a block away, you can waste an awful
 lot of time running back and forth through the rain otherwise. (It's
 always raining when you have to run back and forth.) We use PASSTHRU to

 PAGE 54

 access one of our distributed systems and a locally-attached 3270 on a coax
 through a trench to access the other. Response is certainly better with
 the locally-attached tube, but either mechanism seems to be satisfactory,
 except for the fact that in neither case can I access the remote system
 from my home terminal (a TTY). Your management should realize that if they
 care at all about uptime on any of the systems for which you are the system
 janitor, then they must provide you with access to those systems from your
 home.

 +---------------------------------------+
 | RULE NUMBER ELEVEN |
 +---------------------------------------+
 | YOU ARE ENTITLED TO A HOME TERMINAL |
 +---------------------------------------+

 Your management should also understand that proper maintenance of
 distributed systems requires powerful enough communications facilities to
 allow you to ship new CP and CMS systems down the line to the remote
 systems and to transfer dumps, monitor data, and accounting data from the
 remote locations to your central site. I have one friend who has had such
 severe problems with the reliability of communications with his remote
 systems that he has been forced to keep complete sets of CP textfiles at
 the remote locations so that new nuclei can be built there, but I don't
 think that he would recommend that mode of operation if it can be avoided.
 It's easier to keep all your service disks at the central site. If you
 ordinarily install your CP systems by IPLing a tape and if your remote
 sites have real operators and real tape drives, then you may find it
 satisfactory to distribute new systems by mailing tapes around. Otherwise,
 you'll probably find downloading new systems to be much better.

 You'll almost certainly want to have the capability to read dumps remotely
 (most likely via PASSTHRU and IPCS), but you may still find it convenient
 to be able to transfer dumps to the central site for archiving and for
 mailing to IBM, or just to get better dump viewing performance.

 One annoying little problem with installing new CP systems on an
 unattended, distributed processor is that IBM provides you with no way to
 IPL the new nucleus once you get it installed on the remote sysres. Either
 you must wait for the system to crash, in which case it will automatically
 re-IPL itself, or you must arrange for some human being to go to the remote
 site to do a SHUTDOWN and re-IPL. A number of installations have modified
 SHUTDOWN to add a REIPL option, which allows them to shut a remote system
 down and have it bring itself back up just as it would after a crash. Some
 of the rest of us just crash our remote systems on purpose to get the new
 nucleus IPLed. One easy way to do this is:

 stcp s7f 01

 That puts an odd address into the I/O NEW PSW. It seldom lasts for long
 after that. There are some among us, however, who feel that it is more
 elegant to crash ones system by storing into the SVC NEW PSW.

 PAGE 55

 VIII. The Differences Between CMS Service and CP Service VIII. The Differences Between CMS Service and CP Service

 At long last, we come to CMS. CMS service is done the same way CP service
 is done, but, because CMS has a more complex structure than CP has, there
 are a few additional tasks for you to master. Specifically, you must learn
 to build the CMS system disks (the "S-disk" and the "Y-disk"); you must
 learn to build the CMS saved systems; and you must learn to build the CMS
 MODULE files.

 A. CMS Macro Update and Auxfile Names A. CMS Macro Update and Auxfile Names

 There is also one minor difference from CP which I will tell you about now
 before I forget about it. The auxfile and update names for fixes to CMS
 macros and copy sections do not follow the standard rules. For VM/SP
 Release 1, the CMS macro updates have filetypes of EnnnnnDS, rather than
 SnnnnnDS, as you would expect, and the macro auxfiles are named AUXMSP,
 rather than AUXSP. Therefore, you must use a different control file for
 updating CMS macros and copy sections than you use for updating CMS
 ASSEMBLE files. The one IBM supplies for updating the SP1 CMS macros is:

 FILE: DMSMSP CNTRL S2 ____ ______ _____ __

 TEXT MACS
 TEXT AUXMSP12
 TEXT AUXMSP11
 TEXT AUXMSP

 The reason it is done this way is that two CMS macros have the same
 filenames as CMS ASSEMBLE files, and that wouldn't work if the updates and
 auxfiles had the same filetypes for both macros and source. This is a
 totally unnecessary complication, which the developers really should do
 something about. It can be a real gotcha, because when you want to find
 out what parts of CMS were hit by APAR VM12345, it's so easy to do a
 LISTFILE on * S12345DS and to forget also to do a LISTFILE on * E12345DS.

 B. Another Maxim B. Another Maxim

 This also seems like a good time for another maxim:

 +-----------------------------------+
 | RULE NUMBER TWELVE |
 +-----------------------------------+
 | CHANGE ONLY ONE THING AT A TIME |
 +-----------------------------------+

 Most new users seem to have been told that the right way to do VM service
 is to apply service to all the components at once. Slap up the PUT and let
 VMSERV go wild. The old users, however, make a point of not doing that.
 We NEVER install new versions of CP and CMS at the same time, because if
 you do them one at at time, it is easier to track down the bugs, it is
 easier to back out, and it is just plain easier. Furthermore, many of us

 PAGE 56

 prefer to make both old-release and new-release CMS systems available
 simultaneously during a transition period.

 For years, IBM has been telling us that we MUST install new releases of CP
 and CMS simultaneously, and for years we have been refusing to do so. So,
 it's been left to the user community to prepare and distribute the fixes
 necessary to run a new CMS under an old CP and vice versa. You'll find
 that VMSHARE will provide you with a lot of guidance in this area. Even
 though it may involve your applying mods to your system, I still advise you
 not to install new releases of CP and CMS simultaneously on a system of any
 complexity. You may, of course, need to install a new CP nucleus with a
 new DMKSNT when you install a new CMS, but you can plan ahead so that there
 is nothing else new in that CP nucleus. It's a shame to have to back out
 of a new CMS because of some unrelated glitch in CP. A corollary to this
 rule suggests that you will be better off keeping your service disks for
 various components separate, i.e., don't put CP and CMS fixes on the same
 disk. Incidentally, it appears that SP1 and SP2 CMS and CP mix much more
 easily than has been the case with previous new releases; IBM is to be
 congratulated for this.

 C. CMS Structure C. CMS Structure

 CP has an extremely simple structure. With only a few exceptions*, all CP
 modules are part of the CP nucleus, and the CP nucleus has the simplest
 possible structure -- a straight line -- as described by the CP loadlists.
 CMS has a more complex structure than CP. Many CMS modules are included in
 the CMS nucleus, which is described by the CMS loadlist, CMSLOAD EXEC.
 When you IPL the CMS nucleus, however, you do not bring all of CMS into
 memory, because not all of CMS is in the CMS nucleus. The portions which
 are not in the nucleus are in the form of MODULE files and textfiles, which
 are disk-resident. The disk that they reside on is the CMS system disk,
 the S-disk, which is normally at virtual address 190 for a CMS user. When
 you are using CMS and you invoke a CMS function which is not part of the
 CMS nucleus, the appropriate module is loaded into memory from the S-disk
 and is then executed.

 However, if you had a lot of users bringing copies of the same CMS nucleus
 and the same CMS disk-resident modules into their own virtual memories, you
 would need a lot of real memory to hold all that virtual memory. Since
 much of the code in CMS is re-entrant, there is no reason why one copy of
 it could not be shared by many users. That is what the CMS saved systems
 are for. They allow named copies of the re-entrant portions of CMS to be
 stored on CP-owned volumes so that they can be loaded into memory to be
 used by many users at once. Furthermore, they are loaded by efficient CP
 paging I/O, so there is an advantage to using saved systems even for non-

 * A few CP modules (DMKDDR, DMKDIR, DMKFMT, DMKLD00E, and DMKRND) are not
 part of the CP nucleus. Instead, they are used in the form of "standalone"
 utilities which you can IPL in either a virtual machine or a bare machine.
 Some of them (with the notable and annoying exception of DMKFMT) are also
 available in the form of MODULE files which execute under CMS.

 PAGE 57

 sharable code. Thus, your CMS user doesn't ordinarily IPL 190 to bring in
 the CMS nucleus; instead, he IPLs a saved CMS nucleus, which you have built
 and named "CMS". This saved CMS nucleus contains two segments, 0 and 1.
 Segment 0 is not shared between users, but segment 1 is. You may also have
 built two other saved systems, the CMS "shared segments", CMSSEG and
 CMSZER. CMSSEG contains much of the S-disk-resident CMS code, such as the
 editors and OS simulation. CMSZER contains sharable code which is moved
 from segment zero of the nucleus, plus the file directories for the S-disk
 and the Y-disk, which are known as the "SSTAT" and the "YSTAT". The CMS
 nucleus knows how to load these shared segments and will use them, rather
 than the S-disk-resident code, as long as the segments exist and are
 defined as having virtual memory locations beyond the user's virtual
 machine size. You don't have to have saved systems to run CMS, but if you
 intend to have more than one CMS user at a time, it's a good idea, so I
 will be assuming the use of the CMS saved systems.

 There are usually a good many functions available to CMS users which are
 not, strictly speaking, a part of CMS, as, for example, the various
 language processors. These are ordinarily resident on the CMS Y-disk,
 which is defined at address 19E for each of your CMS users. IBM and other
 software vendors are slowly coming around to designing compilers and other
 big packages to run in "shared segments" similar to CMSSEG and CMSZER. So,
 it may be that much of your Y-disk-resident code can also be executed in
 the form of shared segments. This is an area where you will find lots of
 user mods, too, because the performance benefits are quite noticeable.

 One of the things that make the S-disk and the Y-disk different from
 regular CMS user-type disks is that only the mode 2 files are visible when
 those disks are accessed as S and Y. This is achieved by building the S-
 disk and Y-disk file directories with the equivalent of the commands
 ACCESS 190 S/S * * S2 and ACCESS 19E Y/S * * Y2. This is done for
 performance reasons; smaller file directories can be scanned more quickly
 and require less memory. There are lots of mode 1 files on the S- and Y-
 disks, but the general CMS user doesn't need to see them. The mode 1 files
 are such things as textfiles which the user doesn't reference directly
 because he instead uses the MODULE files into which those textfiles have
 been "link-edited". In other words, the mode 1 files on the S- and Y-disks
 are on those disks because they are needed to build CMS and the compilers
 and so forth, but they are stored invisibly, as mode 1 files, because
 nobody should ever want to use them. But you need those mode 1 files for
 doing CMS maintenance, so you will ordinarily have the S-disk accessed at
 another mode, so that you can "see" the mode 1 files. You will
 occasionally want a similar access to the Y-disk.

 Another unusual property of the S- and Y-disks is that they contain
 "auxiliary directories". Auxiliary directories are another way of keeping
 the users' S- and Y-disk directories small. An auxiliary directory is
 contained in a mode 2 file, such as ASSEMBLE MODULE S2. It points to the
 disk location of a bunch of mode 1 files needed only by that particular
 function, as the assembler MODULEs, in this case. When the user invokes a
 function which uses an auxiliary directory, the auxiliary directory is
 appended to the main directory in memory, but only for the duration of the
 command. Ordinarily, the only auxiliary directory on the S-disk is the one
 for the assembler. There may be several on the Y-disk, depending on which

 PAGE 58

 language processors you have. The existence of the auxiliary directories
 makes copying your S- and Y-disks a bit tricky. If you use COPYFILE to
 copy your S-disk to a new location, for example, you will need to rebuild
 the assembler's auxiliary directory, because the relative addresses of
 those mode 1 files that the assembler auxiliary directory knows about will
 tend to be different on the new disk. The same would hold for copying your
 Y-disk with COPYFILE, of course. The GENDIRT command is used to build an
 auxiliary directory; it's not hard to do, but it is hard to remember to do.
 If you copy your entire S- or Y-disk with DDR COPY ALL, the auxiliary
 directories do not have to be rebuilt, because all of the files on the new
 disk will have the same relative address that they had on the old disk.
 (However, it's a good thing to compress your system disks now and then, to
 reduce head movement, so it's worth doing the GENDIRTs now and then.)

 You need to understand the structure of the S-disk, so that you can build
 yourself a new one from scratch when you need to. For the most part, the
 S-disk is just another CMS-format disk, but it has to be able to be IPLed,
 so it has IPL text at the beginning and the CMS nucleus at the end. When
 you build a CMS nucleus, you normally specify that there should be IPL text
 written on cylinder/block zero of the S-disk to point to the cylinder/block
 at which the nucleus begins. When your users IPL 190, this cylinder-zero
 IPL text is loaded, and then it loads the actual CMS nucleus. When you get
 yourself a new S-disk, you CMS FORMAT it and then you use the RECOMP option
 of FORMAT to decrease the apparent size of the disk. The space left at the
 end is where the CMS nucleus is kept. RECOMPing the size to below the
 nucleus prevents regular files from overlaying the nucleus. You should
 look in the sysgen manual and the PUT Memo to Users to find out how big
 your S-disk should be and how much room you should leave at the end for the
 nucleus. You should also be aware of a bizarre restriction for FBA S-
 disks: the nucleus must begin on an FBA block whose block number is an
 even multiple of 256 (counting from the beginning of the S-disk, not from
 the beginning of the physical volume).

 I recently learned a neat trick from one of the CMS old-timers. He
 maintains a rather volatile CMS system and has found it useful to have
 alternate CMS nuclei, similar to the alternate CP nuclei we talked about
 earlier. Of course, not all of CMS is contained in the CMS nucleus, so you
 don't back all the way out of a bad CMS by IPLing an alternate CMS nucleus,
 but, if you've done something really disastrous to CMS, it's likely to be
 something in the nucleus that's wrong, so that alternate nucleus may be
 quite valuable. What my friend does is quite simple; putting an alternate
 nucleus on his S-disk requires no mods at all. He allocates his S-disk so
 that it is big enough to hold the extra nucleus. He RECOMPs enough room at
 the end for two nuclei, rather than one. He builds his public, production
 nucleus in the standard way, in one of the two nucleus slots, specifying
 that the cylinder-zero IPL text should point to it, so that anyone who
 simply IPLs 190 gets that CMS nucleus. He builds his reliable, backup
 nucleus in the other slot, but replies that he doesn't want the cylinder-
 zero IPL text rewritten, thus leaving it pointing to the other nucleus.
 But, if it turns out that he needs to IPL the backup nucleus, he can issue
 an IPL command which specifies the cylinder/block which is to be IPLed (the
 one where the backup nucleus starts), as, for example, "IPL 190 43".

 PAGE 59

 D. Recommended Control Files and Service Minidisks for CMS D. Recommended Control Files and Service Minidisks for CMS

 I will be using these control files for CMS:

 FILE: DMSSPLCL CNTRL A1 ____ ________ _____ __

 TEXT MACS DSLCLMAC DSPTFMAC DMSSP CMSLIB OSMACRO DOSMACRO TSOMAC
 TEXT AUXLCL
 TEXT AUXPTFS
 TEXT AUXSP12
 TEXT AUXSP11
 TEXT AUXSP

 FILE: LCLMAC CNTRL A1 ____ ______ _____ __

 TEXT MACS
 TEXT AUXMLCL
 TEXT AUXMPTFS
 TEXT AUXMSP12
 TEXT AUXMSP11
 TEXT AUXMSP

 As you can see, they differ from the IBM-supplied control files only in
 specifying auxfiles and maclibs to contain locally-applied service and
 local mods.

 Since the CMS system disk, the S-disk, traditionally contains all CMS
 textfiles and MODULEs, even the old users generally give in and overlay
 local mods on top of service on top of base on the S-disk. They compensate
 for the uncleanness of this by keeping alternate S-disks to flip-flop from
 PUT to PUT. (If they modify CMS much, they tend also to keep around a
 totally unmodified S-disk, at the current PUT level, for deciding whether
 it's their bug or IBM's.) IBM's VMSERV EXEC is designed to allow you to
 install CMS service without having an alternate S-disk. If you cannot
 afford a second S-disk, then I suggest that you use VMSERV to install CMS
 service during dedicated test time. I also suggest that you pray a lot
 while you are doing it. You will be running CMS from your S-disk while you
 are writing the new service onto that S-disk. If you get a machine check
 or a power failure or a bug in VMSERV while you are doing this, it is
 likely to leave you without a usable S-disk, which is the same as being
 without a system at all. This brings up my next-to-the-last rule:

 +---------------------------------------+
 | RULE NUMBER THIRTEEN |
 +---------------------------------------+
 | YOU CAN NEVER HAVE TOO MANY S-DISKS |
 +---------------------------------------+

 If you have only one S-disk, you are going to have to have a lot of
 dedicated test time for installing CMS service and new releases. If you
 have two S-disks, you can put a new version of CMS into production by just
 taking CP down and bringing it back up with a different DMKSNT. You are
 made much less vulnerable to having an installation problem cause a long
 outage, and you can have new versions of CMS available for your users to

 PAGE 60

 try out in advance of their being put into production. I hope you can
 convince your management that the sensible approach is to let you have two
 S-disks. If they won't let you have more than one, be absolutely certain
 that you have a couple of good DDR dumps of your S-disk and a working
 version of an IPLable DDR, either on tape or on cards.

 For the rest of this discussion, I am going to assume that you have two S-
 disks, the production version at address 190 in MAINT's virtual machine,
 and the alternate one at address 490. At any one time, 490 may be either
 an old CMS system you may still want to back out to or a new CMS system
 that you are not yet ready to put into production. As we did in the case
 of CP, let's start with the assumption that you are a brand new user who
 has somehow got SP CMS up and running. This will be the assumed service
 minidisk layout, but what I'll be doing would also work with the IBM
 minidisk layout as long as you have an alternate A-disk and an alternate S-
 disk:

 +---------------------------+ +---------------+
 391 A | WORKAREA, LOCAL MODS AND | 491 | ALTERNATE 391 |
 | LOCALLY-APPLIED SERVICE | | |
 | (updates, auxfiles, | | |
 | textfiles, maclibs) | | |
 +---------------------------+ +---------------+

 +---------------------------+ +---------------+
 394 C/A | CMS UPDATES, AUXFILES, | 494 | ALTERNATE 394 |
 | AND NEW SOURCE FROM | | |
 | THE CURRENT PUT | | |
 +---------------------------+ +---------------+

 +---------------------------+
 395 D/A | ASSEMBLE, COPY, AND MACRO |
 | FILES FROM 1.1 BASE -or- |
 | CMS UPDATES, AUXFILES, |
 | NEW SOURCE FROM PUT 8105 |
 | AND ASSEMBLE, COPY, AND |
 | MACRO FILES FROM 1.0 BASE |
 +---------------------------+

 +---------------------------+ +---------------+
 190 F/A | CMS TEXTFILES, MODULES, | 490 | ALTERNATE 190 |
 | AND EXECS | | |
 +---------------------------+ +---------------+

 Note that the A-disk for CMS service in this example is at address 391.
 The service disks for the current PUT and for the base are normally
 accessed as read-only extensions, as is the S-disk. The virtual machine
 you use for doing CMS maintenance will ordinarily have a write link to 190
 defined in its directory entry, but your PROFILE EXEC should re-LINK 190
 read-only, both to reduce the chances of your inadvertently modifying the
 S-disk and also to prevent your users from receiving a message about the
 LINK every time they log on when you're logged on.

 PAGE 61

 Before we go any further, I should point out that there are hard-line
 purists among us who insist that most of the mode 1 files on the S-disk and
 the Y-disk should not be there. The quality of the performance your CMS
 users get depends a lot on how quickly they can load files from the system
 disks. Obviously, the larger these disks are, the greater is the average
 head movement required to service a user's requests for system files.
 There are some sophisticated installations which do run with S- and Y-disks
 from which most of the mode 1 files have been removed to the base, service,
 and local mods disks, as with CP. There are people here who run with
 5-cylinder S-disks. Implementing such a departure from the standard
 configuration is beyond the scope of this presentation, but you should be
 aware of the possibility.

 You should certainly keep in mind the desirability of keeping your S- and
 Y-disks as small as possible and as unfragmented as possible. And, as a
 general rule, you should be careful not to "pollute" your S-disk with
 anything that is not an integral part of CMS. One good move IBM made in
 VM/SP was to suggest that the EREP libraries be removed from the S-disk to
 a separate disk at virtual address 201. Since the EREP libraries account
 for about a fourth of the space required for the S-disk and tend to be used
 once a day by one userid, this recommendation made a lot of sense. You may
 want to consider removing other functions too, e.g., the vanilla IPCS, if
 you're using the program product, or all of the DOS stuff, if you can get
 away with it. Also, if your S-disk was built originally with either DISK
 LOAD or VMFPLC2 LOAD, you will find that copying it to a TDISK and back
 again with COPYFILE may reduce the space used by several hundred blocks.
 This is because of lamentable bugs in both VMFPLC2 and DISK which leave
 empty blocks at the ends of files.

 PAGE 62

 IX. Installing Corrective Service for CMS IX. Installing Corrective Service for CMS

 A. Regenerating a CMS Module A. Regenerating a CMS Module

 You are sitting in your office one day, browsing through a new PUT bucket
 that just came in the mail, when a guy from down the hall sticks his head
 in and tells you that SSERV is broken; it keeps getting an opcode
 exception. If you are like me, you tell him that that's too bad but that
 you have never heard of SSERV. Then he tells you that it's part of CMS, a
 really neat DOS utility. You tell him you'll get right on the problem.
 After you look up SSERV to find out what it does, you decide to take a look
 at that new bucket before calling the Support Center. And there, in the
 General Information section of the SPCMS subset, you find an exact
 description of the problem:

 "THE SSERV MODULE AND THE DMSSRV TEXT ARE INCORRECT ON PUT
 8107. THERE IS AN MVC INSTRUCTION MISSING WHICH WILL CAUSE
 A PROGRAM CHECK OPERATION EXCEPTION.
 RECOMMENDATION: REASSEMBLE DMSSRV AND CREATE A NEW TEXT.
 THEN PERFORM A CMSGEND SSERV TO CREATE A
 NEW SSERV MODULE."

 Sounds like they left some debugging code in, doesn't it? This is a
 typical packaging problem, and the fixup is typical, too. You don't even
 have to apply a PTF; you just have to pick up the pieces and put them back
 together. The instructions tell you to reassemble DMSSRV. That is
 certainly easy enough:

 vmfasm dmssrv dmssplcl
 UPDATING 'DMSSRV ASSEMBLE D1'
 APPLYING 'DMSSRV S12530DS D1'
 ASMBLING DMSSRV
 ASSEMBLER (XF) DONE
 NO STATEMENTS FLAGGED IN THIS ASSEMBLY
 DMSSRV TEXT CREATED

 That gives you a file called DMSSRV TEXT on your CMS service A-disk, 391.
 But what do you do then? Well, the bucket writer was nice enough to tell
 you. He said to create a new SSERV MODULE file by doing a CMSGEND SSERV.
 You type "CMSGEND SSERV", and you get a response indicating that CMSGEND is
 not a known CP/CMS command. But, I happen to know where CMSGEND is,
 because I have gotten that message so many times. CMSGEND is an EXEC, and
 it lives on the S-disk. The reason you couldn't find it is that it is a
 mode 1 file and you forgot about accessing the S-disk at another mode, so
 you can't see any of the mode 1 files. IBM makes CMSGEND a mode 1 file for
 a good reason -- CMSGEND ordinarily needs to pick up mode 1 textfiles from
 the S-disk in order to function properly; keeping CMSGEND at mode 1 forces
 you to have the S-disk accessed properly when you use it. You don't need
 write access; you just need to access 190 as something other than S and try
 again:

 PAGE 63

 access 190 f/a

 cmsgend sserv

 *** CURRENT STATUS:
 FILE ' SSERV MODULE A2 ' DOES NOT EXIST
 FILE ' SSERV MODOLD A1 ' DOES NOT EXIST
 *** LOADING:
 INVALID CARD - S12530DS 104 UV03791 MISSING STATEMENT IN SOURCE BOOK.
 INVALID CARD - * DMSSRV S12530DS D1 CMS495 02/17/81 16:10:00
 INVALID CARD - * DMSSP MACLIB S2 CMS190 6/10/81 18:45:00
 INVALID CARD - * CMSLIB MACLIB S2 CMS190 2/07/81 12:19:00
 INVALID CARD - * OSMACRO MACLIB S2 CMS190 3/18/81 13:32:56
 INVALID CARD - * DOSMACRO MACLIB S2 CMS190 6/11/80 13:25:00
 INVALID CARD - * DMSSRV ASSEMBLE A1 CMS496 6/13/80 7:51:00
 DMSSRV SD 020000

 *** RESULTS:
 ' SSERV MODULE A2 ' CREATED FROM TEXT DECK (S) DMSSRV
 WITH ATTRIBUTES CLEAR NOMAP ALL
 R;…

 You invoke CMSGEND, which invokes LOAD, which puts out messages complaining
 about all those comment cards in your textfile, but the MODULE gets built
 anyway. (You could suppress the messages by specifying the NOINV option of
 CMSGEND, but I prefer the security of seeing the messages.) Now you have
 on your A-disk a new SSERV MODULE which incorporates that new DMSSRV TEXT
 from your A-disk. You DISK DUMP the MODULE to the guy down the hall and
 ask him to test it. He does. It works fine. That's great, but the only
 places where the good version exists are on your A-disk and his A-disk, so
 you are going to have to do something to make it generally available, i.e.,
 you must put it on the S-disk where everyone can find it.

 But before we get into that, let's talk some more about CMSGEND. CMSGEND
 is a very nice, reliable tool that understands how to build the MODULE
 files for various CMS commands from their constituent textfiles. It is
 also used to build the MODULEs that are built from CP textfiles, e.g., DDR,
 DIRECT, etc. When you use CMSGEND, you just tell it the module name. It
 knows which textfiles are needed and what GENMOD options to use in each
 case and whether or not the MODULE should be generated to run in the CMS
 transient area. The CMSGEND EXEC is sort of interesting to look at, but
 you needn't bother to, because you are quite safe in treating CMSGEND as a
 primitive. The only problems I have ever had with CMSGEND were the result
 of its being so badly documented in the sysgen manual.

 PAGE 64

 Some of what the sysgen manual tells you about CMSGEND is both wrong and
 dangerous. It tells you that to use CMSGEND you must access your S-disk as
 your read/write A-disk. This is certainly not true and not something you
 ever want to do when there is some good way to avoid it. The manual goes
 on to tell you that if you want to generate GLORP MODULE from a DMSGLP
 textfile that is on some disk other than your S-disk, then you should
 access your 190 as A, access the other disk as B/A, temporarily rename the
 DMSGLP TEXT that is on the 190 to something else (so CMSGEND will not find
 it and will use your new version instead), and then invoke CMSGEND.
 CMSGEND will then erase GLORP MODOLD, rename GLORP MODULE to GLORP MODOLD,
 and create a new GLORP MODULE, all on the 190. Don't believe it! That is,
 indeed, what will happen if you take those steps, but that is NOT the way
 to do it. As we have seen, CMSGEND works perfectly well without your
 having write access to the S-disk, and it is perfectly legitimate to want
 to build CMS MODULEs from textfiles that are not on an S-disk. Indeed,
 that is the best way to test fixes to CMS MODULEs, as well as fixes to
 DIRECT and DDR.

 There is, however, one important point about using CMSGEND that did not
 come out in our very simple example of regenerating SSERV. CMSGEND doesn't
 use a control file. This means that it doesn't know about textfiles that
 have filetypes of TXTLCL or TXTPTFS or TXTTST or whatever. It just knows
 about textfiles that are named TEXT. The DMSSRV textfile we built above
 was named TEXT, so it all worked out, but it would not have worked if that
 had been a DMSSRV TXTPTFS textfile. This inability to use control files is
 unfortunately not a problem just with CMSGEND; it occurs throughout CMS.
 The textfiles which are incorporated into MODULEs must be named TEXT
 because CMSGEND doesn't understand control files; the textfiles which are
 incorporated into the shared segments must be named TEXT because CMSXGEN
 and CMSZGEN don't understand control files; and the textfiles which sit out
 in the open as mode 2 files on the S-disk must be named TEXT because CMS
 LOAD doesn't understand control files. Some CMS nucleus textfiles could
 have filetypes other than TEXT, since the CMS nucleus is built with good
 old VMFLOAD, but it is safer always to follow:

 +---+
 | RULE NUMBER FOURTEEN |
 +---+
 | IF IT'S CMS, YOU'VE GOT TO NAME IT 'TEXT' |
 +---+

 This also holds for the CP textfiles for DMKDDR, DMKDIR, DMKFMT, etc., when
 you want to use them to build IPL decks or MODULEs.

 This is why all the update level identifiers in my recommended CMS control
 files are TEXT. This way, any time you assemble a CMS module, VMFASM will
 name the output TEXT, rather than TXTPTFS or some such. So, you have to
 remember only thirteen rules, not fourteen. But, if you are going to be
 modifying CMS a lot, you might be better off to use a more sophisticated
 control file and keep the modified textfiles on your A-disk named TXTPTFS
 and TXTLCL and TXTTST and so forth. However, you will have to remember to
 rename them when you copy them to the S-disk or when you are building
 MODULEs on your A-disk.

 PAGE 65

 B. Putting It on the S-disk (Or on the Y-disk) B. Putting It on the S-disk (Or on the Y-disk)

 Now, back to the question of getting the new DMSSRV TEXT and the new SSERV
 MODULE onto the S-disk. One thing you should understand about changing the
 S-disk, is that the S-disk directory is saved in both the CMS saved system
 and the CMSZER shared segment, so you must resave both of those when you
 change the S-disk. The Y-disk directory is saved only in CMSZER;
 therefore, you need not resave CMS when you change the Y-disk, but you must
 update the saved Y-disk directory in the CMSZER shared segment.

 Here are the steps you need to take to put your new SSERV into production,
 starting with the new textfile and MODULE on your A-disk:

 link * 190 190 mr
 access 190 f

 rename dmssrv text f1 = oldtext f5
 copyfile dmssrv text a = = f1 (olddate
 copyfile sserv module a = newmod f1 (olddate
 rename sserv module f2 = oldmod f5
 rename sserv newmod f1 = module f2

 ipl 190 clear
 VM/SP CMS - 02/28/82 16:36
 savesys cms

 VM/SP CMS - 02/28/82 16:36
 Y (19E) R/O
 R;

 dmszes
 IS THE SHARED S-DISK DIRECTORY TO BE USED WITH THIS SYSTEM? YES|NO
 yes
 IS THE SHARED Y-DISK DIRECTORY TO BE USED WITH THIS SYSTEM? YES|NO
 yes
 SYSTEM SAVED
 R;

 You first get write access to 190. You rename the old textfile on the 190,
 rather than erasing it, because you never know when you might want it. But
 you make it mode 5, so that the users can't see it and so you'll know that
 it's garbage which you can erase one of these days. Remember that you want
 to avoid fragmentation of the S- and Y-disks for performance reasons, so
 don't let the obsolete files accumulate endlessly. You copy over the new
 textfile, making it mode 1 (since that's what the old one was) and you copy
 over the new SSERV MODULE under a temporary name. Then you quickly rename
 the old SSERV MODULE S2 to SSERV OLDMOD S5 and rename the new one SSERV
 MODULE S2. You do an IPL 190, which (unlike IPL CMS) causes the nucleus
 SSTAT to be rebuilt. You then immediately do a SAVESYS to rebuild the CMS
 saved system, incorporating this new SSTAT. (You enter that SAVESYS
 command when CMS puts up its first read, not later, because that is the
 state in which you want CMS saved.) Once that is done, you use the DMSZES
 command to resave the SSTAT and YSTAT portions of CMSZER, in order to get
 the SSTATs (the S-disk directories) in CMSZER and CMS back into synch with

 PAGE 66

 one another. If the new file had been going onto the Y-disk, the procedure
 would have been the same, except that you would have skipped the SAVESYS.

 Be very careful, when you move something to the S- or Y-disks, to make sure
 you make it mode 1, if it is supposed to be mode 1, and that you make it
 mode 2, if it is supposed to be mode 2. If you make something mode 1 that
 is really supposed to be mode 2, the users will get strange error messages
 and start phoning you. The easiest way to tell which mode a file is
 supposed to be is to look at the file it is going to replace.

 In this example, I used the DMSZES command to rebuild the SSTAT and YSTAT
 in CMSZER. Even though only the S-disk was changed, you must tell DMSZES
 that you want both the SSTAT and the YSTAT rebuilt. Contrary to what you
 might expect, if you tell DMSZES to rebuild only the SSTAT (because you've
 changed only the S-disk), it will wipe out the pointer to the CMSZER YSTAT
 when it rebuilds the SSTAT. (There is a recent fix for this problem,
 VM15270.) On the other hand, if you've changed only the Y-disk and you
 tell DMSZES not to rebuild the SSTAT, it exits without building either the
 SSTAT or the YSTAT. The CMSZGEN EXEC invokes DMSZES for you when you use
 it to build CMSZER. So, another approach would have been simply to rebuild
 the entire CMSZER shared segment, using the CMSZGEN EXEC, but DMSZES is a
 bit faster and you don't have to increase your virtual machine size to use
 it. Note that when you use DMSZES, your virtual machine size must be small
 enough that CMSZER can be attached beyond the end of your virtual machine,
 as it normally is for a CMS user; however, when you use CMSZGEN, your
 virtual machine size must be large enough that CMSZER can be loaded into
 your virtual machine.

 You should be aware of the fact that the standard one-segment CMSZER has
 room for only seven hundred File Status Table entries. If you have more
 than a total of seven hundred mode 2 files on your S- and Y-disks, then you
 will overflow CMSZER, which will cause you to get an obscure error message
 when you invoke DMSZES or CMSZGEN:

 DMSZES100W CMSZER SYSTEM NAME 'CMSZER' NOT INITIALIZED

 If this happens, you should question whether you really need all those
 files on your system disks. If you do, you can redefine CMSZER in your
 DMKSNT to be two segments long. This will give you room for an additional
 1024 mode 2 files. (It may also mean that you have to change the location
 of your CMSSEG so that CMSSEG and CMSZER don't overlap in virtual memory.)

 PAGE 67

 C. A Digression on the Subject of Updating a Production CMS System C. A Digression on the Subject of Updating a Production CMS System

 The first several times you go through this operation, you certainly want
 to do it with no other users logged onto your system using the S-disk. In
 fact, you may want never to do it any other way. This is an area in which
 there are many schools of thought. Some installations take the position
 that it is wrong ever to change anything about the production CMS while
 there are users logged on, because the chances are so good that you will
 interfere with their use of the system. Others say you are hurting the
 users more by taking the machine away from them every time you need to put
 some little fix on CMS. A few of the larger, older installations have
 solved the problem by means of elaborate local mods which make it
 completely safe for them to update CMS "on the fly". (Perhaps the most
 notable of these mods are the ones that Charlie Brown did when he was at
 TYMSHARE. I wish he had done them at IBM instead.) Most of the rest of us
 take the position that we will change CMS on the fly when we have to, using
 the most reliable mechanisms that we can, and that when the change is
 major, we will install it by flip-flopping our S-disks and saved systems
 across a CP IPL. In my examples, I am going to show you how to update CMS
 on the fly, but I am not necessarily recommending that you should do it
 that way. The same command sequences are reasonable to use even if you are
 the only one on the machine.

 The situation is this: the users who are logged on have access to 190 and
 19E and have the S-disk and Y-disk directories in memory. They will
 continue to use those directories after you change the disks, so you must
 make sure that their directories remain valid; otherwise, the users will
 get strange I/O error messages. Their directories can "see" only the mode
 2 files on the S- and Y-disks, so you can change any of the mode 1 files
 which are not pointed to by auxiliary directories (except for a problem
 with HELP, which I'll explain later). You must not erase or replace a mode
 2 file, but you CAN change its name and mode, as long as you leave the file
 in the place where the old directory expects to find it. In our SSERV
 example, the only mode 2 file that is changed is the SSERV MODULE. You
 rename that to SSERV OLDMOD S5 and copy over a new SSERV MODULE S2. This
 allows the users who are already logged on to continue to use that old
 version of SSERV. It still exists at the old location, and their file
 directories still point to it.

 You will recall that the S-disk directory (the SSTAT) is kept in two
 places. The saved CMS system contains an SSTAT in segment zero. When a
 user IPLs CMS, this SSTAT comes into his virtual machine with the rest of
 the CMS nucleus. CMS then tries to attach the CMSZER shared segment. If
 that is successful and if you have saved an SSTAT in CMSZER and if the two ___
 SSTATs match, then CMS releases the memory used by the SSTAT in nucleus
 segment zero and uses the shared SSTAT in CMSZER instead.

 PAGE 68

 Getting back to our example, until you change the SSTAT in the CMS saved
 system by doing the SAVESYS, anyone who logs on will still be able to use
 the saved SSTAT in CMSZER, which points to the old SSERV MODULE. Once you
 do the SAVESYS, everyone who logs on or re-IPLs CMS will get the new S-disk
 directory in the new CMS saved system and, thus, the new SSERV. However,
 users who logon (or re-IPL) between the time that you do the SAVESYS and
 the time that you do the DMSZES to update the S-disk directory in the
 CMSZER shared segment will have two S-disk directories which will not
 match. CMS initialization will notice this and will not use the shared
 directory in CMSZER. It will also issue the error message:

 DMSINS100W CMSZER SYSTEM NAME 'CMSZER' SSTAT NOT AVAILABLE.

 (There is a similar message when you change the Y-disk and don't update
 CMSZER's YSTAT.) Users who never notice the most urgent LOGMSGs will
 notice this message and get upset. So, you should resave the shared
 directory as quickly as possible. One little trick that will speed the
 process up a bit is to stack the replies to DMSZES:

 dmszes#yes#yes

 The situation with changing the Y-disk is slightly different. The Y-disk
 directory is not saved in the saved CMS system, so every time a CMS user
 logs on or re-IPLs CMS, he gets a new nucleus copy of the Y-disk directory,
 which is built from the Y-disk as it exists at that moment. So, you might
 have a problem with someone who logs on between the time an old Y-disk
 MODULE gets renamed to mode 1 and the time the new mode 2 file is created.
 As far as this user can tell, there is no such file on the Y-disk, because
 the copy of the Y-disk directory in his nucleus doesn't list such a file,
 since it lists only mode 2 files. This is a hole that is simply there, and
 you cannot stop it up without modifying the system. You can, however, make
 the hole as small as possible by doing the RENAMEs very quickly in an EXEC,
 rather than keying in the commands by hand. This can still catch someone,
 of course, but the hole is rather small.

 Even if you don't catch someone that way, you have the problem of
 DMSINS100W messages for the Y-disk too. When a user logs on or re-IPLs CMS
 after you have changed the Y-disk, but before you have rebuilt the shared
 YSTAT in CMSZER, he'll get that message telling him that he can't use the
 shared version of the YSTAT because it doesn't match the YSTAT that has
 just been built in his CMS nucleus. Because there is no saved nucleus _____
 version of the Y-disk directory, users will start getting the YSTAT NOT
 AVAILABLE message at logon as soon as you change the Y-disk. This will
 continue until you get the DMSZES done to get the shared YSTAT back in
 synch with the real volume. So, you would be well advised to have an EXEC
 for updating the Y-disk. Basically, your EXEC should copy the new file to
 the Y-disk under a temporary name, then rename the old file to OLDxxx Y5,
 rename the new file to its proper name and mode 2, release the disk to
 rewrite the directory, re-access it to build a new YSTAT in your nucleus
 (ACCESS 19E Y/S * * Y2), and then do the DMSZES, as above.

 PAGE 69

 If you were to take these actions at a time when there weren't a lot of
 people logging on, it might be acceptable to have a few users get the SSTAT
 or YSTAT message and non-shared directories. There is another, more severe
 problem with changing the S-disk, however. The users who were logged on
 before all this started are still using the old version of the CMS saved
 system and the CMSZER SSTAT and YSTAT and will continue to do so until they
 re-IPL or log off. If they use the HELP facility, they may have trouble
 because of the way the HELP files are accessed. The HELP files are mode 1,
 not mode 2, so they don't show up in the saved directories, but the HELP
 function uses the saved S-disk directory in the CMS nucleus or in CMSZER to
 point to the disk-resident directory for the disk, so that it can find the
 mode 1 HELP files. If you've done anything to change the disk-resident
 directory, then the memory-resident directory may not point to a valid
 disk-resident directory. More precisely, the "disk origin pointer" in
 virtual storage points to either record 4 or record 5 on the disk. One of
 these two records always points to the current directory file; the other
 points to the previous directory file. Each time the disk directory is
 updated, the roles of records 4 and 5 are reversed. So, if your saved S-
 disk directory points to record 4 as the disk origin pointer, and you make
 any change to the S-disk, then record 5 will become the valid disk origin
 pointer, but your saved directory in virtual storage will still point to
 record 4, which will point to the old directory. There is no guarantee
 that the old directory will remain valid. In this case, users trying to
 get help will get I/O error messages instead. Some installations have
 addressed this problem by such means as having the HELP XEDIT profile
 (HELPXED XEDIT) automatically re-access the S-disk when an I/O error is
 received. (Note that you can't re-access 190 as S, so the fixup in this
 case would be to access it at some other mode.) You may have mode 1 HELP
 files on your Y-disk, as well as on your S-disk. Some program products put
 mode 1 HELP files there. If you have such files, then the situation with
 changing the Y-disk is the same as the situation with changing the S-disk.

 There is one other potential problem with updating CMS with users logged
 on. Your logged-on users are using the CMS shared segments, CMSSEG and
 CMSZER. If you make a change to CMS which requires you to resave one of
 these, then the system will automatically give each of the logged-on users
 a private copy of the old shared segment, which he will continue to use ___
 until he logs off or re-IPLs CMS or detaches the segment. This doesn't
 help your performance, if you do it in the middle of the day, of course,
 but there is potentially a worse problem. Those old users will get copies
 of the old segment, but they'll get copies of only those pages which have
 been referenced by someone since the last CP IPL (or the last time the
 segment was saved). After you save the new shared segment, if one of these
 old users references a shared-segment page which had not been referenced
 previously, then he will get that page from the new shared segment. I'm ___
 sure you can see the possibility of getting bizarre results from this.
 This is less likely to be a problem with CMSSEG than with CMSZER, because
 CMSSEG is detached after every use (unless you have modified your system
 not to do that, as many installations have). In fact, in practice it is
 seldom a problem with either segment. If several people have been using
 CMS for a while before you resave the shared segment, it's very likely that
 all the pages which are ever going to be referenced will already have been
 referenced before you resave the shared segment. Nevertheless, you should
 be aware of this potential source of interference with your users.

 PAGE 70

 D. Updating a Shared Segment D. Updating a Shared Segment

 Just when you have the SSERV fire fought, another of your colleagues tells
 you that he's finally gotten hold of a C compiler for CMS. He's going to
 install it, but he wants you to make the CMS EDITOR (the old one)
 understand a filetype of "C", so you sit down and slam out a mod to DMSEDF:

 FILE: DMSEDF CFDEF0 A1 ____ ______ ______ __

 ./ I 00740000 $ 740900 900 11/21/80 16:20:31
 DC CL8'C',A(C) CFDEF0
 ./ I 01620000 $ 1620200 200 11/21/80 16:20:31
 C DS 0F C LANGUAGE CFDEF0
 DC C'S',X'00' MIXED CASE, NO SERIALIZATION CFDEF0
 DC C'V',AL1(160) RECFM V, LRECL 160 CFDEF0
 DC AL1(0,0) NO TRUNC, VERIFY ALL CFDEF0
 DC A(CTABS) DEFAULT TAB STOPS CFDEF0
 SPACE 2 CFDEF0
 ./ I 01720000 $ 1721000 1000 11/21/80 16:20:31
 CTABS DC AL1(1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46) CFDEF0
 DC AL1(49,52,55,58,61,64,67,70,73,76,0) CFDEF0

 FILE: DMSEDF AUXLCL A1 ____ ______ ______ __

 * * * * * * * * * * * * * * * AUXLCL * * * * * * * * * * * * * * * *
 CFDEF0 - 05/22/79 - DEFINE FILE DEFAULTS FOR C LANGUAGE PROCESSOR.

 vmfasm dmsedf dmssplcl
 UPDATING 'DMSEDF ASSEMBLE D1'
 APPLYING 'DMSEDF CFDEF0 A1'
 ASMBLING DMSEDF
 ASSEMBLER (XF) DONE
 NO STATEMENTS FLAGGED IN THIS ASSEMBLY
 DMSEDF TEXT CREATED

 Again, you have the problem of how to install the change. This time, there
 is no friendly bucket writer to tell you, so you look in Appendix C of the
 sysgen manual.* You find there a table which tells you what needs to be

 * Appendix C is not infallible. There have been errors in it, but the real
 problem is that it doesn't list every CMS module. A more reliable way to
 decide how to put a given CMS textfile into production is to look for its
 name in DMSZER ASSEMBLE, DMSSEG ASSEMBLE, the CMSGEND EXEC, and the CMSLOAD
 EXEC (the CMS nucleus loadlist). If the name is listed in DMSZER ASSEMBLE,
 then the textfile is part of the CMSZER shared segment, which you build
 with CMSZGEN. If the name is listed in DMSSEG ASSEMBLE, then the textfile
 is part of the CMSSEG shared segment, which you build with CMSXGEN. If the
 textfile is listed in the CMSGEND EXEC, then it must be incorporated into
 some CMS MODULE via CMSGEND. If the name is listed in the CMS loadlist,
 then the textfile is part of the CMS nucleus; you install it by rebuilding
 the nucleus with VMFLOAD. Note, too, that all the textfiles between DMSNUC
 and the first SLC statement in the CMS loadlist are also part of CMSZER.

 PAGE 71

 regenerated when a given CMS module is changed and even what EXECs to use
 to do it. You look up DMSEDF in this table and find that you need to
 regenerate the EDIT MODULE, the EDMAIN MODULE, and the CMSSEG shared
 segment and that you do these things with CMSGEND and CMSXGEN. You use
 CMSGEND to generate an EDIT MODULE and an EDMAIN MODULE on your A-disk.
 One command does them both:

 cmsgend edit

 *** RESULTS:
 ' EDIT MODULE A2 ' CREATED FROM TEXT DECK (S) DMSEDX DMSEDF DMSZIT
 *** RESULTS:
 ' EDMAIN MODULE A2 ' CREATED FROM TEXT DECK (S) DMSEDX DMSEDF

 Once you have the two editor modules on your A-disk, you can test your mod
 by just issuing an EDIT command. Like almost all the other CMS MODULEs,
 EDIT is loaded from a user's disk even if it exists in the shared segment
 and on the S-disk. If you were applying a fix to XEDIT, however, you
 couldn't test the new XEDIT MODULE from your A-disk without first getting
 rid of the CMSSEG shared segment (by re-IPLing with PARM SEG=NULL). The
 shared segment version of XEDIT is always used in preference to a disk-
 resident version. Alternatively, you could test a new version of XEDIT by
 invoking XEDMAIN, rather than XEDIT; the XEDMAIN MODULE is picked up from
 your disk, rather than from the shared segment. (Note, however, that you
 can't test EDIT by invoking EDMAIN.) It's not clear why the authors of
 XEDIT chose to violate CMS conventions in these ways, but they did, so it's
 something you must remember when you test fixes or mods to XEDIT.

 You test your EDIT mod and decide you like it, so you move the new textfile
 and the two new MODULEs to the S-disk. Then, of course, you do a SAVESYS
 and a DMSZES to get the saved S-disk directories back in line. That gives
 you a new EDIT MODULE S2 and a new EDMAIN MODULE S2, but the editor also
 lives in the CMSSEG shared segment, so you still need to regenerate CMSSEG.

 The CMSXGEN EXEC, which is used to generate CMSSEG, is another generally
 reliable tool which you can treat as a primitive. CMSXGEN knows how to
 build the shared segment, defaulting the shared segment name to CMSSEG and
 its address to 100000; you may specify a different name and address if you
 wish. You should be conscious, however, of one problem with CMSXGEN. It
 won't warn you if you overflow the segment, so it's a good idea always to
 check the CMSSEG loadmap to make sure everything fits. Before you invoke
 CMSXGEN, you must make your virtual machine size large enough that CMSXGEN
 will be able to load the contents of the shared segment into your virtual
 memory, at the addresses they will have in the shared segment:

 PAGE 72

 spool prt to ipcs
 define storage 4m
 STORAGE = 04096K
 CP ENTERED; DISABLED WAIT PSW '00020000 00000000'

 ipl 190 clear
 VM/SP CMS - 02/28/82 16:36
 Y (19E) R/O
 CMSZER SYSTEM NAME 'CMSZER' NOT AVAILABLE.
 CMSSEG SYSTEM NAME 'CMSSEG' NOT AVAILABLE.

 access 391 a (noprof
 access 190 b/a
 cmsxgen 210000 cmsseg
 PRT FILE 0003 TO IPCS COPY 001 NOHOLD
 SYSTEM SAVED
 CMSXGEN COMPLETE

 Those two messages about the segments not being available simply mean that
 the segments can't be attached to your virtual machine because your virtual
 machine is too big. That's exactly what you want to have happen, since you
 want to rebuild CMSSEG. Because your virtual printer is spooled to IPCS,
 the loadmap for this new segment is sent to that virtual machine to be
 archived.

 E. Updating an IPL Deck E. Updating an IPL Deck

 You have barely got the new editor installed when you get a call from Level
 Two asking you to fixtest a fix for a problem you've been having with DDR
 running standalone. They read you the fix. You key it in and assemble it.
 You rename DMKDDR TXTTST to DMKDDR TEXT, since this is one of those CP
 functions which live on the S-disk. Then you have to figure out how to
 build a version of DDR that you can run standalone to do the test. The
 sysgen manual tells you to use the GENERATE EXEC, so you do. It seems to
 work; at any rate, it builds you a new IPL DDR file on your A-disk. But
 you type out the beginning of that new IPL file and discover that the
 comments there don't list your new fix; the S-disk textfile was used, not
 yours, even though you remembered to rename yours to TEXT. So, you take a
 look at the GENERATE EXEC and decide that, short of modifying it, there is
 no way you are going to be able to get GENERATE to build you an IPL file
 from a textfile on your A-disk. Since this is a fixtest, you have no
 intention of putting the textfile on your S-disk yet, but it turns out to
 be very easy to build the IPL file "by hand":

 copyfile ddr loader s dmkddr text a ipl ddr a (replace

 The IPL file is quite simply just a loader with the DMKDDR textfile
 concatenated to it. (Other IPL files are built with 3CARD LOADER S2.) You
 punch IPL DDR A to cards or MOVEFILE it to tape, so that you can do your
 standalone test. Later, when you are satisfied that this is a good fix,
 you invoke CMSGEND to build a new DDR MODULE; then you copy DMKDDR TEXT,
 DDR MODULE, and IPL DDR from your A-disk to the S-disk and do a SAVESYS and
 a DMSZES.

 PAGE 73

 F. Updating the CMS Nucleus F. Updating the CMS Nucleus

 The next CMS problem you encounter requires you to apply a fix to DMSITP.
 You key in the fix and do the assembly and then consult Appendix C.
 Appendix C tells you that DMSITP is part of the CMS nucleus. When you
 change DMSITP, you must rebuild both the nucleus and the CMSZER shared
 segment. You want to test this fix before you put it into production, but
 you are using your alternate S-disk for something else just now, so you
 have the problem of how to test this nucleus code. It can be done very
 nicely using a small disk (which might even be a TDISK) to hold your test
 nucleus:

 define t3350 590 2
 DASD 590 DEFINED
 format 590 k
 '2' CYLINDERS FORMATTED ON 'K(590)'.

 format 590 k 1 (recomp
 LABEL CUU M STAT CYL TYPE BLKSIZE FILES
 MNT590 590 K R/W 1 3350 1024 0

 The disk on which the CMS nucleus resides must be CMS-formatted and must
 have room for IPL text at the beginning and for the nucleus at the end.
 The space for the nucleus at the end is set aside by reducing the
 minidisk's apparent size with the RECOMP option of FORMAT.

 Building a CMS nucleus is very much like building a CP nucleus. VMFLOAD is
 used to punch the files listed in the CMS loadlist, beginning with
 DMKLD00E, the VM loader. Then the loader file is IPLed. The loader loads
 the nucleus and passes control to DMSINIW, which prompts you for
 information about your new nucleus. The reply to the query about the
 "system disk address" is "190", because 190 is the place where the CMS user
 running with this new nucleus (i.e., you) will find the CMS MODULEs, etc.
 The reply to the query about the "IPL device address" is "590", because
 that's where you want this nucleus written. The "nucleus cylinder/block
 address" is the number of the first cylinder or block in the space set
 aside at the end of the nucleus minidisk, in this case, cylinder 1.

 PAGE 74

 access 190 f/a
 F (190) R/O
 190 ALSO = S-DISK

 close punch
 close reader
 spool reader class n
 spool punch to * class n
 spool prt to ipcs

 vmfload cmsload dmssplcl
 SYSTEM LOAD DECK COMPLETE
 PUN FILE 8837 TO MAINT COPY 001 NOHOLD
 R;

 order reader 8837

 ipl 00c clear
 DMSINI606R SYSTEM DISK ADDRESS =
 190
 DMSINI615R Y-DISK ADDRESS =
 19e
 DMSINI607R REWRITE THE NUCLEUS ?
 yes
 DMSINI608R IPL DEVICE ADDRESS =
 590
 DMSINI609R NUCLEUS CYL/BLK ADDRESS =
 1
 DMSINI610R ALSO IPL CYL/BLK 0 ?
 yes
 DMSINI611R VERSION IDENTIFICATION =
 test cms system
 DMSINI612R INSTALLATION HEADING =
 princeton university time-sharing system

 TEST CMS SYSTEM

 With that, the new nucleus is written out onto your 590 and IPLed, so that
 you can test the fix to DMSITP.

 When you are ready to put this fix into production, you copy the new
 textfile to 190, ACCESS 190 as A, and again invoke VMFLOAD to build a
 nucleus. This time, you reply "190" to the query about the IPL address.
 You reply to the query about the nucleus address with the block or cylinder
 number at which the nucleus starts on your S-disk (the beginning of the
 area set aside by RECOMP). As soon as the new nucleus is IPLed, you can do
 a SAVESYS and a CMSZGEN to save the new nucleus and the new CMSZER shared
 segment. Remember that you must first have made your virtual machine large
 enough to contain CMSZER. Your virtual printer should again be spooled to
 IPCS so that the new CMS nucleus loadmap and the new CMSZER loadmap can be
 archived.

 PAGE 75

 X. Installing Preventive Service for CMS X. Installing Preventive Service for CMS

 A. New CMS Service Minidisks A. New CMS Service Minidisks

 When you are ready to load up the CMS service from a PUT, you first get
 your alternate S-disk (490) ready to receive the service by using DDR to
 copy the current S-disk to the alternate. One thing to remember about
 using DDR to copy S-disks: the size you see when you issue the QUERY DISK S
 command is the size of the S-disk less the amount of space that has been ____
 set aside for the CMS nucleus (by means of the RECOMP option of CMS
 FORMAT); the command QUERY VIRTUAL 190 will give you the true size; that is
 the number of cylinders or blocks you want to copy. To be safe, just use
 DDR COPY ALL.

 You may want to swap your 491 with your 391 and your 494 with your 394, but
 since you can't swap 490 with 190 yet, let's just leave them at those
 addresses and set up an EXEC to access them like this:

 +---------------------------+
 491 A | WORKAREA, LOCAL MODS AND |
 | LOCALLY-APPLIED SERVICE |
 +---------------------------+

 +---------------------------+
 494 C/A | CMS UPDATES, AUXFILES, |
 | AND NEW SOURCE FROM |
 | THE NEW PUT |
 +---------------------------+

 +---------------------------+
 395 D/A | ASSEMBLE, COPY, AND MACRO |
 | FILES FROM 1.1 BASE -or- |
 | CMS UPDATES, AUXFILES, |
 | NEW SOURCE FROM PUT 8105 |
 | AND ASSEMBLE, COPY, AND |
 | MACRO FILES FROM 1.0 BASE |
 +---------------------------+

 +---------------------------+
 490 F/A | CMS TEXTFILES, MODULES, |
 | AND EXECS |
 +---------------------------+

 PAGE 76

 B. Loading the Service B. Loading the Service

 You remember that the layout of the files on the logical service tape for
 SP was something like this:

 1. SP installation EXEC 10. CMS auxfiles
 11. CMS updates
 2. CP auxfiles 12. CMS macro auxfiles
 3. CP updates (PTFs) 13. CMS macro updates
 4. CP macro auxfiles 14. New CMS source
 5. CP macro updates 15. CMS maclibs
 6. New CP source 16. CMS textfiles
 7. CP maclibs 17. Standalone IPL decks
 8. CP textfiles 18. LOADER and service EXECs
 9. CP loadlist EXECs 19. CMS module files
 20. HELP files and XEDIT EXECs
 21. EREP txtlibs
 22. 308x IOCP

 You use VMSERV to load the CMS service onto the 490 and 494 disks or you do
 it by hand with these commands (assuming that your SERVICE DISKMAP shows
 the SP logical tape starting at file 40 of the PUT):

 tape rewind
 tape fsf 2 <== skip PUT junk
 tape fsf 37 <== skip VM Release 6 files
 tape fsf 1 <== skip SP installation EXEC
 tape fsf 8 <== skip VM/SP CP files
 access 494 c
 access 490 f
 vmfplc2 load * * c (eof 5
 vmfplc2 load * * f (eof 6
 tape fsf
 vmfplc2 load * * f

 These commands load the new CMS source, the CMS updates, and the CMS
 auxfiles onto your alternate CMS PUT disk; all other CMS files are loaded
 onto the alternate S-disk. Wait to load the EREP file to your EREP disk
 some other day, when you're feeling strong and adventurous. Load the IOCP
 file only if you are supporting a 308x.

 PAGE 77

 C. Rebuilding the Assembler Auxiliary Directory C. Rebuilding the Assembler Auxiliary Directory

 Having built the new S-disk from the old S-disk and the files on the
 service tape, you must rebuild the auxiliary directory for ASSEMBLE.
 CMSGEND knows how to do the GENDIRT for ASSEMBLE, so you just enter:

 access 490 a
 cmsgend assemble

 You may have noticed that there is an ASMGEND command. You could use that,
 instead of CMSGEND, to rebuild the assembler auxiliary directory, but that
 would be overkill. ASMGEND also rebuilds all the assembler MODULE files
 from the textfiles. You need to use ASMGEND only if you have applied a mod
 or a fix to one of the IFNxxxxx textfiles, which doesn't happen often.

 D. Building a Nucleus on the Alternate S-Disk D. Building a Nucleus on the Alternate S-Disk

 Having loaded up the service, you again go through the steps that we went
 through for CP earlier. You take the corrective measures the IBM and
 VMSHARE buckets recommend; you carry forward any old corrective service you
 still need; and you reapply your local mods. You do the VMFMACs with the
 LCLMAC control file and the VMFASMs with the DMSSPLCL control file. When
 you have all the updated textfiles, etc., on your alternate S-disk, you can
 build a new nucleus on the alternate S-disk:

 access 490 a
 close pun
 close rdr
 spool pun to * class n
 spool rdr class n

 vmfload cmsload dmssplcl
 PUN FILE 1301 TO MAINT COPY 001 NOHOLD
 order rdr 1301

 system clear
 cp detach 190
 cp define 490 190

 ipl 00c clear

 VMFLOAD punches a CMS nucleus loader file to your virtual reader. You get
 rid of the regular S-disk at 190 and the CMS system you were running under.
 You redefine your alternate S-disk to have a virtual address of 190,
 because that's where you want it to be when you test this system. You then
 IPL the CMS loader file and reply to the questions from DMSINI. Answer the
 ones about the system disk address and the IPL address with "190", not
 "490". (Your alternate S-disk will be at 190 when it's being used, and
 that's where it is now, so that's where you want the nucleus written.)
 It's a good idea to reply to the request for the "version identification"
 with something like "TEST CMS SP107 mm/dd/yy" to make it obvious that this
 is a test system. When you've answered all the questions, you have a
 system for testing the new PUT built on your alternate S-disk.

 PAGE 78

 E. Building Alternate Saved Systems E. Building Alternate Saved Systems

 You also need to build some saved systems for the new PUT, to test it
 properly. Don't skip this step. It is very often the case that shared-
 segment code works fine until it's actually put into a shared segment. In
 DMKSNT, in addition to your regular definitions for CMS, CMSSEG, and
 CMSZER, create definitions for NEWCMS, NEWSEG, and NEWZER. These new
 definitions will be very like your standard definitions. Their SYSNAMEs
 will be different, of course. And you must allocate different DASD
 locations for these saved systems and describe the locations in the SYSVOL
 and SYSSTRT parameters. In the NEWCMS definition, VSYSADR should be 190,
 but VSYSRES and SYSCYL should point to the 490 S-disk.

 Then, once you've got that version of DMKSNT in production and you have the
 new PUT loaded onto 490, you can build your new saved systems:

 define storage 16m
 define 490 190

 ipl 190 parm seg=newsegBB zer=newzerBB ("B" = blank)
 savesys newcms

 access 491 a (noprof
 access 190 b/a
 cmsxgen nnnnnn newseg
 cmszgen nnnnnn newzer

 CMS uses the CMSSEG and CMSZER shared segments by default, so you need to
 do something to make this NEWCMS system know to use NEWSEG and NEWZER,
 instead. The PARM on the IPL statement is one way of doing this. When you
 specify the IPL PARM field as shown here, with the segment names right-
 padded with blanks, the names "NEWSEG " and "NEWZER " get moved into the
 SYSNAMES table in the CMS nucleus by the CMS initialization routine before
 the SAVESYS is done, so the saved NEWCMS system will default to using
 NEWSEG and NEWZER. This will not be sufficient, however, if anyone is
 going to be using this system by IPLing it from its virtual address, rather
 than IPLing the saved system. In that case, you need to change the default
 shared segment names in your test S-disk-resident nucleus, not just in the
 saved system. I know people who do this by simply editing DMSNUC TEXT,
 changing "CMSSEG" and "CMSZER" to "NEWSEG" and "NEWZER", before doing the
 VMFLOAD to build the nucleus. But, since that seems a little impure, you
 could build yourself a test version of the SYSNAMES macro and a DMSNUC
 TXTTST which uses the test macro and a control file that knows about TXTTST
 textfiles. Incidentally, if you ever have any doubts about what shared
 segments you are using, you can find out by issuing the QUERY SYSNAMES
 command.

 PAGE 79

 F. Making the Test CMS System Available to Your Users F. Making the Test CMS System Available to Your Users

 You now have a complete test system. Announce to your users that they can
 try it out by invoking the NEWCMS EXEC, which you've put on the Y-disk:

 FILE: NEWCMS EXEC Y2 ____ ______ ____ __

 CP DETACH 190
 CP LINK MAINT 490 190 RR
 CP IPL NEWCMS

 Be sure to warn them not to invoke this EXEC from their PROFILE EXECs.
 They're likely to become confused when their PROFILE does an IPL which does
 a PROFILE which does an IPL, etc.

 G. Putting a New Version of CMS Into Production G. Putting a New Version of CMS Into Production

 We have two possible scenarios for making the test CMS the production CMS.
 The easiest way depends on your having been able to position your 490 disk
 in a good place as far as performance is concerned (middle of volume,
 etc.). In that case, you just want to swap the two S-disks. Here are the
 steps involved in that:

 - Rebuild DMKSNT, changing the SYSNAMES for CMS, CMSSEG, and CMSZER to
 OLDCMS, OLDSEG, and OLDZER, and changing NEWCMS, NEWSEG, and NEWZER to
 CMS, CMSSEG, and CMSZER.
 - Rebuild the CMS nucleus on 490 as before, but specify a "version
 identification" that will be suitable for production or use the default.
 - Swap the directory entries for 190 and 490.
 - Install the new directory just before shutting CP down.
 - IPL the new CP nucleus containing the new DMKSNT.
 - Before letting any real users log on, resave your new CMS system without
 specifying the segment names, so that the defaults will be used:
 ipl 190
 savesys cms

 The other scenario is for putting the new CMS into production if you can't
 afford to have both S-disks in good places. In that case, you'll want to
 copy 490 to 190, rather than swapping the two. For this, you need some
 dedicated test time. First, back up your 190 (DDR to tape). Next, DDR
 COPY 490 to 190 and:

 define storage 16m
 ipl 190
 savesys cms
 access 391 a
 access 190 b/a
 cmsxgen nnnnnn cmsseg
 cmszgen nnnnnn cmszer

 Then, restore the backup of the old system to 490, just in case you have a
 disaster ahead of you. (It's so nice to have at least one truly runnable
 CMS system online at all times.) Finally, open it up to the users.

 PAGE 80

 XI. Converting to a New Release of CMS XI. Converting to a New Release of CMS

 When you are ready to go to a new release of CMS, get yourself a new S-disk
 at address, say, 590 and format it and RECOMP it. Then, you are ready to
 load up the files from the distribution tape. All the CMS files from the
 distribution tape go onto the new S-disk, except the ASSEMBLE, COPY, and
 MACRO files. So, you load the CMS textfiles, MODULEs, EXECs, maclibs, IPL
 files, etc., onto the new S-disk and the source files onto a new base disk.

 Note that until you get your new CMS built and can run under it, you need
 to access 590 after the S-disk for your current system as, say, mode W; if
 the new S-disk were accessed before the production S-disk, you would end up
 using CMS MODULEs and textfiles from the new release, which are very likely
 to be incompatible with the CMS that you are running under. However, if
 there are files on the new S-disk that you need to use while you are
 building your new system, these must be accessed ahead of the corresponding
 files on the production S-disk. This complication is another reason why
 the purists feel that many of the files that are on the S-disk should
 really be on service disks instead. Probably the easiest way to handle
 this difficulty is to access the new S-disk as a whole after your
 production S-disk and to access components of the new S-disk in front of
 the production S-disk:

 access 590 w/a
 access 590 f/a * exec f1
 access 590 g/a * maclib g2

 If you have a service tape to be applied atop the new base, you load it
 just as we did before, and, again, you go through the steps of applying the
 service recommended in the error bucket, reapplying any old corrective
 service you still need, and reapplying your local mods. Remember also to
 re-CMSGEND the assembler. Having done all that, you have a complete S-disk
 and can build a new CMS nucleus on that S-disk using VMFLOAD. You should
 also build new test saved systems to use to test this new release before
 you put it into production. Check the sysgen manual for the new release to
 see what the saved systems for the new release should look like and put
 appropriate new entries into your DMKSNT.

 Again, the process of installing a new release is very much the same as the
 process of putting a new service level into production.

 PAGE 81

 XII. Installing Service on Program Products XII. Installing Service on Program Products

 Many of the VM program products, such as PASSTHRU, for example, are
 installed and maintained in very much the same way that the SCP itself is
 installed and maintained. Once you understand the philosophy of installing
 service on CP and CMS, you should have no trouble applying service to these
 products as long as they have been packaged correctly. Most of these
 products look more like CMS than like CP; you may have to generate MODULEs
 for them and put these files on the Y-disk. You may find that they don't
 have nice EXECs like CMSGEND to generate the MODULEs for you, but, if they
 don't, there will be instructions somewhere in their manuals telling you
 the commands you need to regenerate any MODULEs. You will need to check
 most of the program product installation and service EXECs to see whether
 they reference the CP or CMS maclibs, in which case you may have to modify
 the EXECs to reference the correct maclib names for your installation and
 the version of VM that you are running.

 PAGE 82

 XIII. Converting from SP1 CMS to SP2 CMS XIII. Converting from SP1 CMS to SP2 CMS

 Converting from SP1 CMS to SP2 CMS turns out to be remarkably easy. If you
 define the saved systems and set up the minidisks before your SP2 tape
 arrives, you can have the new CMS up and running within ten minutes of
 getting the tape. I am very pleased to be able to report that IBM put some
 effort into making this new CMS run under an old CP; for example, the new
 CMS IDENTIFY command checks to see whether an SP2 CP command it needs is
 available and, if it isn't, uses an older CP DIAGNOSE instead. Most of SP2
 CMS seems to function properly under SP1 CP, with one exception: if you
 have applied APAR VM14879 to your Release 1 CP system, you will be unable
 to IPL an SP2 saved CMS system. However, you will have the same problem if
 you have applied VM14879 to your Release 2 CP system.

 I'll be going through the steps for bringing up SP2 CMS, using the
 assumptions that you are running SP1 CP and CMS and that you want to bring
 the new CMS up alongside the old one, rather than replacing it immediately.

 A. SP2 Changes that Affect CMS Installation and Service A. SP2 Changes that Affect CMS Installation and Service

 There are some structural changes in SP2 CMS which you need to be aware of
 before you try installing it.

 First, the HELP files no longer default to being on the S-disk, although
 they can be, if you wish. By default, they are on a separate disk at
 virtual address 19D, as mode 1 files, except that the HELPMENU files are
 mode 2. As far as I can see, making the MENU files mode 2 is not magic;
 they did it that way just because they wanted the disk to appear to contain
 a few files when HELP accesses only the mode 2 files. You may want to
 consider moving your local HELP files onto 19D, but the HELP command can
 use HELP files on other disks, so you don't have to move your files.
 However, HELP can no longer find mode 1 HELP files on the Y-disk, so, if
 you have any such files, you must move them, change their mode, or modify
 HELP. HELP accesses the HELP files at the first vacant disk mode. This
 may cause you problems if you are expecting local HELP files on a disk
 later in the search order to be used in preference to IBM's files of the
 same name. We have tentatively decided to move our local HELP files to the
 19D in order to get them off of the Y-disk (and out of the YSTAT). One
 thing you should keep in mind that the sysgen manual neglects to mention is
 that you need to add DIRECTORY LINKs to 19D for all your CMS users; this
 may cause problems for users who are already using 19D for something else.
 Another change in HELP that you should be aware of is that the format of
 the HELP screen has been changed; there are now two fewer lines of data on
 the screen than formerly. So, if your local HELP files have been carefully
 formatted to look pretty on the screen, they won't anymore.

 PAGE 83

 Second, IBM has now decided that EREP should be put back onto the S-disk.
 I disagree. EREP is a separate component and causes plenty of headaches in
 its own right. You shouldn't have to cope with new EREP bugs at the same
 time you are coping with the bugs in a new level of CMS. And, it is
 ridiculous to have to resave your CMS systems just to apply an EREP fix.
 Besides, the EREP libraries are huge and will make two big, practically-
 unused holes in the middle of your S-disk. When you decide to risk going
 to a new EREP, I recommend that you load up the current EREP txtlibs and
 the current EREP MODULE onto a 201 disk and run EREP from there.

 Third, there is no longer a CMSZER shared segment. The sharable nucleus
 code and the SSTAT and YSTAT (the directories for the S-disk and Y-disk),
 which used to be in CMSZER, have been folded back into the CMS saved
 system.

 Fourth, the CMS nucleus is now loaded at a high address, rather than being
 loaded into segments 0 and 1. One result of this is that you may find that
 you cannot IPL 190 because your virtual machine size isn't large enough to
 contain the nucleus. Another result of moving the nucleus to a higher
 address is that it ends up in the middle of larger virtual machines. It
 will work that way, but the big user's free storage is fragmented into one
 piece below the nucleus and another above it. Furthermore, the piece above
 the nucleus cannot be used by CMS OS GETMAIN simulation, no matter how big
 you make the virtual machine. Some installations have decided to get
 around this problem by generating their CMS nucleus up in the sixteenth
 megabyte of virtual memory. But this means that all their CMS users will
 have segment tables for 16 megs of segments; moving CMS from its default
 location to the sixteenth meg increases the CP free storage required for
 segment tables by 112 doublewords for each CMS user. IBM's recommendation
 is to build two CMS saved systems, "CMS" and "CMSL", the latter being
 generated at a much higher address than the former. (They provide two CMS
 loadlist EXECs, CMSLOAD and CMSLOADL, for building these two CMS systems.)
 But if you do that, you may end up with twice as many shared pages in real
 memory as you have now. You'll have to decide what is best for you. One
 approach being taken by many installations is to install a saved system
 named "CMS" which is not really CMS, but is, instead, an IPLable program
 which decides which CMS the user needs and IPLs it for him. That way, the
 general user need never be aware of the two sizes of CMS systems.
 Obviously, IBM should have provided this function when it decided to give
 us two flavors of CMS. But, since IBM didn't, Cornell University did.
 Appendix E contains Larry Brenner's program to build such an IPLable
 system.

 Fifth, some benighted soul decided that in SP2 the CP maclib, DMKSP MACLIB,
 should be on the S-disk, rather than on a CP service disk. When you build
 your S-disk from the distribution tape, DMKSP MACLIB will end up on the S-
 disk. This is madness, of course, so you should copy the maclib to your CP
 base service disk and erase it from the S-disk. After a considerable
 struggle, IBM has accepted APAR VM16999 against this problem. The first
 SP2 PUT will move the CP maclib off the S-disk onto the 194.

 PAGE 84

 B. Before the Tape Arrives B. Before the Tape Arrives

 It can be very confusing juggling two releases of CMS. For example, I've
 been told by others that the assembler goes crazy if you accidentally mix
 the nucleus and the S-disk from SP1 and SP2. In general, I find life to be
 easier if I can start running under a new CMS immediately, rather than
 switching back and forth between two flavors of CMS or trying to do
 assemblies for one level of CMS under another level. For that reason, I
 suggest that you first build a totally unmodified SP2 CMS and later apply
 your mods and corrective service to it once you can run under it. Of
 course, I'm not suggesting that you open it up to the world in that
 condition.

 You can get your new CMS service minidisks set up before your tape arrives.
 I recommend a service disk layout along the lines of the following:

 +---------------------------+
 491 A | WORKAREA, LOCAL MODS AND |
 | LOCALLY-APPLIED SERVICE |
 | (updates, auxfiles, |
 | textfiles, maclibs) |
 +---------------------------+

 +---------------------------+
 494 C/A | CMS UPDATES, AUXFILES, |
 | AND NEW SOURCE FROM |
 | THE CURRENT PUT |
 +---------------------------+

 +---------------------------+
 495 D/A | ASSEMBLE, COPY, AND MACRO |
 | FILES FROM 2.0 BASE |
 +---------------------------+

 +---------------------------+
 490 F/A | CMS TEXTFILES, MODULES, |
 | AND EXECS |
 +---------------------------+

 +---------------------------+
 19D | HELP FILES |
 +---------------------------+

 This layout includes an A-disk, an S-disk, a HELP disk, and source disks
 for the base and PUT. If your 491 and 494 from the earlier layout are
 available, you can use them for the A-disk and the PUT source disk. The
 SP2 base CMS source fits nicely in 55 cylinders of 3350. The new S-disk
 can be quite a bit smaller than the SP1 S-disk was (assuming you aren't
 planning to put EREP on it). Thirty 3350 cylinders will give you an S-disk
 which holds vanilla SP2 CMS and two one-cylinder nuclei and is only 85
 percent full. Fifteen 3350 cylinders for the 19D holds all of IBM's HELP
 files and our local HELP files and leaves plenty of room for growth. When
 you are calculating the sizes for your minidisks, note that the CMS nucleus

 PAGE 85

 has grown quite a bit, to 46 pages (368 FBA blocks), so be sure to allocate
 enough room for it. In fact, I recommend that you set aside room for two
 CMS nuclei on your new S-disk, not for backout purposes, but because you
 are going to want to be able to IPL both the large and the small CMS
 nucleus by address, as when you want to resave your CMS systems because of
 some change to the S-disk or Y-disk. Format your new minidisks and build a
 PROFILE EXEC for your new A-disk which will access the service disks in the
 order shown. Remember to RECOMP the S-disk, to leave room for the nuclei.
 (In my case, the 30-cylinder S-disk is RECOMPed to 28 cylinders, leaving
 room for two 1-cylinder nuclei, in cylinders 28 and 29.)

 Once you've defined the SP2 minidisks, you can set up the new saved system
 definitions in DMKSNT. You may want to set everything up with default
 values to begin with, so that you can get a Release 2 CMS built right away.
 The Release 2 sysgen manual will tell you what the saved system definitions
 should look like, except that it forgets to tell you about the CMSSEG
 definition for the "large" CMS nucleus. (The sample DMKSNT files on the
 distribution tape don't have it either, but the Program Directory does.)
 Here are the default definitions I used for a system with 3350's:

 * VMSPR2
 * DMSALPHA AT X'1D0000' VMSPR2
 SP2CMS NAMESYS SYSNAME=SP2CMS,SYSSIZE=256K, VMSPR2*
 VSYSADR=190,VSYSRES=XXX974,SYSCYL=031, VMSPR2*
 SYSVOL=VMM018,SYSSTRT=(262,1),SYSPGCT=73, VMSPR2*
 SYSPGNM=(0-4,14-33,464-511),SYSHRSG=(29,30,31) VMSPR2
 * VMSPR2
 * SP2SEG AT X'1A0000' VMSPR2
 SP2SEG NAMESYS SYSNAME=SP2SEG,SYSSIZE=96K, VMSPR2*
 VSYSADR=IGNORE,SYSCYL=,VSYSRES=, VMSPR2*
 SYSVOL=VMM010,SYSSTRT=(223,60),SYSPGCT=48, VMSPR2*
 SYSPGNM=(416-463),SYSHRSG=(26,27,28) VMSPR2
 * VMSPR2
 * DMSALPHA AT X'F00000' VMSPR2
 SP2CMSL NAMESYS SYSNAME=SP2CMSL,SYSSIZE=256K, VMSPR2*
 VSYSADR=190,VSYSRES=XXX974,SYSCYL=031, VMSPR2*
 SYSVOL=VMR001,SYSSTRT=(327,1),SYSPGCT=73, VMSPR2*
 SYSPGNM=(0-4,14-33,3840-3887), VMSPR2*
 SYSHRSG=(240,241,242) VMSPR2
 * VMSPR2
 * SP2SEGL AT X'ED0000' VMSPR2
 SP2SEGL NAMESYS SYSNAME=SP2SEGL,SYSSIZE=96K, VMSPR2*
 VSYSADR=IGNORE,SYSCYL=,VSYSRES=, VMSPR2*
 SYSVOL=VMM018,SYSSTRT=(263,1),SYSPGCT=48, VMSPR2*
 SYSPGNM=(3792-3839),SYSHRSG=(237,238,239) VMSPR2

 These entries define a "small CMS" named SP2CMS and a "large CMS" named
 SP2CMSL, with CMSSEG shared segments named SP2SEG and SP2SEGL. These names
 are used rather than "CMS" and "CMSSEG" because we are still using those
 for our production SP1 CMS system. Note that the saved CMS system needs
 quite a bit more DASD space than before. Once you've figured out how much
 space you need for these additional saved systems, find the space on your
 system-owned volumes, CP-format it, add the new saved system definitions to
 your DMKSNT, and install a new CP nucleus containing the new DMKSNT.

 PAGE 86

 C. Loading up SP2 CMS from the Distribution Tape and the PUT C. Loading up SP2 CMS from the Distribution Tape and the PUT

 Once the saved system spaces are formatted, the new DMKSNT is installed,
 and the minidisks are allocated and formatted, you've done all you can
 until the tape arrives. When it comes, you are ready to load it up. The
 files on the distribution tape are in the following order:

 1. Installation EXEC 5. EREP
 2. Sample files 6. CMS textfiles, EXECs, maclibs
 3. CP textfiles 7. CP source
 4. HELP files 8. CMS source

 (The last two items are on separate reels, if you get 1600 bpi tapes.)
 There is an elaborate new installation EXEC, PREP EXEC, on the distribution
 tape. I loaded it up, but it looked like an awful lot of bother, so I just
 erased it and did everything "by hand." That's the approach I will be
 demonstrating.

 First, access your new disks in write mode. Note again that until you get
 your new CMS built and can run under it, you need to access 490 after the
 S-disk for your current system as, say, mode Z.

 access 19d b <== HELP disk
 access 495 d <== base source disk
 access 490 z <== new S-disk

 Mount the tape on 181 and load it up, skipping EREP and the CP stuff and
 erasing the CP maclib which gets loaded onto the S-disk:

 tape fsf 3
 vmfplc2 load * * b
 tape fsf
 vmfplc2 load * * z
 erase dmksp maclib z
 tape fsf
 vmfplc2 load * * d

 If you've been able to get hold of an SP2 PUT, then you should load it
 next. The file layout in the SP2 "logical tape" on the VM PUT is very
 similar to the SP1 file layout, but with a few differences:

 1. SP installation EXEC 10. CMS auxfiles
 11. CMS updates
 2. CP auxfiles 12. CMS macro auxfiles
 3. CP updates (PTFs) 13. CMS macro updates
 4. CP macro auxfiles 14. New CMS source
 5. CP macro updates 15. CMS maclibs
 6. New CP source 16. CMS textfiles
 7. CP maclibs 17. Standalone IPL decks
 8. CP textfiles 18. LOADER, service EXECs, XEDIT EXECs
 9. CP loadlist EXECs 19. CMS module files
 20. EREP txtlibs
 21. HELP files
 22. 308x IOCP

 PAGE 87

 The differences are that the XEDIT macros are now in the file with the
 service EXECs, rather than with the HELP files, and files 20 and 21 have
 been interchanged. To apply the CMS portion of the SP2 PUT, position the
 tape to the beginning of the SP2 logical tape and VMFPLC2 LOAD files 10-14
 to your new PUT source disk (494), files 15-19 (and possibly 22) to your
 new S-disk (490), and file 21 to your new HELP disk (19D). By the way,
 despite what the sysgen manual says, the filetypes of SP2 APAR fixes have a
 prefix of "L", except that the CMS macro APARs have a prefix of "Z".

 D. Building the CMS Nuclei and Saved Systems D. Building the CMS Nuclei and Saved Systems

 Now you are ready to build a CMS nucleus, just as we've done before:

 spool prt to ipcs
 spool pun to * class n
 spool rdr class n
 access 490 a
 vmfload cmsload dmssp
 SYSTEM LOAD DECK COMPLETE

 define storage 16m
 CP ENTERED

 detach 190
 DASD 190 DETACHED
 define 490 190
 DASD 190 DEFINED

 ipl 00c clear

 DMSINI606R SYSTEM DISK ADDRESS = 190
 DMSINI615R Y-DISK ADDRESS = 19e
 DMSINI640R HELP DISK ADDRESS = 19d
 DMSINI604R REWRITE THE NUCLEUS ? yes
 DMSINI608R IPL DEVICE ADDRESS = 190
 DMSINI082E IPL DEVICE ERROR - REENTER
 #cp link * 190 190 mr
 DMSINI608R IPL DEVICE ADDRESS = 190
 DMSINI609R NUCLEUS CYL/BLK ADDRESS = 29
 DMSINI610R ALSO IPL CYL/BLK 0 ? yes
 DMSINI611R VERSION IDENTIFICATION = sp2 cms
 DMSINI612R INSTALLATION HEADING = princeton university time-sharing system

 SP2 CMS

 (If you get that "IPL DEVICE ERROR" message, you need to establish a write
 link to 190.) The only thing new here is the prompt for the address of the
 HELP disk, normally 19D. You can specify some other address for the HELP
 disk, if you prefer. You can even put the HELP files on the S-disk, as in
 SP1, in which case you would reply "190" to DMSINI640R.

 PAGE 88

 At this stage, you've got a runnable CMS system and should never have to go
 back to Release 1, so you might find it easier to define this new S-disk as
 190 in your DIRECTORY entry, leaving the current S-disk as 190 for everyone
 else, of course. The rest of the presentation will assume that the SP2 S-
 disk is at address 190.

 There are a couple of things which still need to be done to the new S-disk.
 The first is the one I always forget, the regeneration of the assembler's
 auxiliary directory:

 access 190 a
 cmsgend assemble
 ENTER GENDIRT TARGET DISK MODE LETTER
 s
 ASSEMBLE MODULE A2 CREATED FROM DMSASM DMSASD
 access 491 a
 access 190 f/a

 You specify the "target disk mode" as "S", because that's where the
 ASSEMBLE MODULE will be when it's being used.

 The other thing you need to do is new with this release and not documented
 in the sysgen manual -- you must build a SYSTEM NETID file to define your
 systems to the new IDENTIFY command. There is a sample SYSTEM NETID on the
 distribution tape, and it should now be on your new S-disk:

 FILE: SYSTEM NETID S2 ____ ______ _____ __

 +-----------------------+
 | *CPUID NODEID NETID |
 | 00000 NODEID NETID |
 +-----------------------+

 You need to update the SYSTEM NETID file with the CPU serial numbers, node
 names, and RSCS virtual machine names of all your CPUs. The sample file
 from the tape is in error in showing a five-character CPU serial number;
 IDENTIFY won't work unless you give it six-character serial numbers.

 I'm going to dig my heels in and insist that this file should be maintained
 with UPDATE, so it's time to build local control files for the new CMS:

 FILE: DMSSPLCL CNTRL ____ ________ _____

 TEXT MACS DSLCLMAC DMSSP CMSLIB OSMACRO DOSMACRO TSOMAC DMKSP
 TEXT AUXLCL
 TEXT AUXPTFS
 TEXT AUXSP

 To build DMSSPLCL CNTRL, start with the DMSSP CNTRL from your new S-disk.
 Note that there are no longer 'AUXSP11' and 'AUXSP12' entries, but there
 will soon be an 'AUXSP21' entry, alas. Note, too, that you still need a
 separate LCLMAC CNTRL, since the developers haven't done anything about
 DMSERR and DMSABN being the names of both macros and ASSEMBLE files.

 PAGE 89

 Build an update file to sequence SYSTEM NETID and another update file to
 define your configuration and an auxfile which lists both these updates:

 FILE: SYSTEM SEQUENCE FILE: SYSTEM SYSGEN ____ ______ ________ ____ ______ ______

 +----------------+ +--------------------------------------+
 | ./ S | | ./ R 00002000 00002000 $ 2100 100 |
 | | | 020470 PUCC3081 VMRSCS |
 | | | 220470 PUCC3081 VMRSCS |
 | | | 010577 MAE4341 VMRSCS |
 | | | 014099 ASIS4331 VMRSCS |
 +----------------+ +--------------------------------------+

 FILE: SYSTEM AUXLCL ____ ______ ______

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXLCL $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 SYSGEN - 08/07/82 - PRINCETON CPU ID'S, NODE NAMES, RSCS VM NAMES
 SEQUENCE - 08/07/82 - SEQUENCE SYSTEM NETID, SINCE IBM WON'T

 You will be replacing the SYSTEM NETID file that came on the S-disk with an
 updated version, so copy the original to your base source disk, so you will
 always have a copy to update. Then build an updated copy of SYSTEM NETID
 on your A-disk and copy it to the S-disk, remembering to make it mode 2:

 access 190 f/a
 access 495 d
 copy system netid f = = d (olddate
 access 495 d/a
 update system netid d dmssplcl (ctl rep
 access 190 f
 copy system netid a system netid f2 (olddate replace
 access 190 f/a

 That gets the S-disk in order. You can now build a "large CMS" nucleus:

 spool prt to ipcs
 spool pun to * class n
 spool rdr class n

 access 190 a
 vmfload cmsloadl dmssp
 SYSTEM LOAD DECK COMPLETE

 define storage 16m
 ipl 00c clear
 DMSINI606R SYSTEM DISK ADDRESS = 190
 DMSINI615R Y-DISK ADDRESS = 19e
 DMSINI640R HELP DISK ADDRESS = 19d
 DMSINI604R REWRITE THE NUCLEUS ? yes
 DMSINI608R IPL DEVICE ADDRESS = 190
 DMSINI609R NUCLEUS CYL/BLK ADDRESS = 28
 DMSINI610R ALSO IPL CYL/BLK 0 ? no
 DMSINI611R VERSION IDENTIFICATION = sp2 large cms
 DMSINI612R INSTALLATION HEADING = princeton university time-sharing system

 PAGE 90

 This is just like building the small nucleus, except for four things:

 1. The CMSLOADL loadlist is used in the VMFLOAD command;
 2. The nucleus is written on the other nucleus cylinder;
 3. The cylinder-zero IPL text is not rewritten; and
 4. A different version identifier is specified.

 Incidentally, instead of keeping both CMS nuclei on the S-disk, you might
 prefer to keep one on the S-disk and one on the Y-disk. That way, you
 could have cylinder-zero IPL text for both of them. To do this, you would
 have to RECOMP room for a nucleus at the end of your Y-disk. Then, you
 would reply "19E" to DMSINI608R and "yes" to 610R, and you would specify
 the correct Y-disk cylinder number in response to 609R.

 Having built both nuclei somewhere, you can build the new saved systems,
 SP2CMS and SP2CMSL:

 define storage 16m

 ipl 190 clear parm seg=sp2segBB ("B" = blank)
 SP2 CMS
 savesys sp2cms
 SYSTEM SAVED
 SP2 CMS

 ipl 190 28 clear parm seg=sp2seglB <or> ipl 19e clear parm seg=sp2seglB
 SP2 LARGE CMS
 savesys sp2cmsl
 SYSTEM SAVED
 SP2 LARGE CMS

 Note that IPLing 190 IPLs the cylinder-zero IPL text, which brings in the
 small nucleus from cylinder 29. To IPL the large nucleus from 190, you
 simply specify its cylinder (28) in the IPL command. You specify segment
 names in the IPL commands so that those will become the default segment
 names in the saved systems you are building. Be sure to remember to right-
 pad the segment names with blanks to eight characters.

 Now, you can invoke CMSXGEN to build your shared segments, the CMSSEGs for
 the two new saved systems:

 spool prt to ipcs
 define storage 16m

 ipl sp2cmsl parm seg=null
 SP2 LARGE CMS
 access 491 a (noprof
 access 190 b/a
 cmsxgen 1a0000 sp2seg
 SYSTEM SAVED
 CMSXGEN COMPLETE
 cmsxgen ed0000 sp2segl
 SYSTEM SAVED
 CMSXGEN COMPLETE

 PAGE 91

 You specify NOPROFILE when you access your A-disk because your profile
 might access unneeded disks and use memory needed for saving the shared
 segments. You access your S-disk read-only so that the segment maps won't
 be written on it and obsolete the SSTATs in your newly-saved systems. If
 you want the maps on the S-disk, then do the SAVESYSs for the two CMS
 systems after you have built the shared segments.

 E. What To Do If You Don't Like the Default Shared Segment Locations E. What To Do If You Don't Like the Default Shared Segment Locations

 At Princeton, we've tentatively decided to put the small CMS and its shared
 segment high enough (5 megs) that they will almost always be the only ones
 in use and to move the shared segment for the large CMS up a bit into the
 sixteenth meg, so that the big users can have the bottom 15 megs to
 themselves. We also want to expand the nucleus area allocated to the
 shared SSTAT and YSTAT by one segment, so that we can use Brown's idea of
 adding a shared RSTAT for the HELP files.

 Moving the shared segments is no problem. As in the past, you need only
 change the definitions in DMKSNT and specify the new, non-default addresses
 in the CMSXGEN commands. These are our new shared segment definitions:

 * VMSPR2
 * SP2SEG AT X'500000' VMSPR2
 SP2SEG NAMESYS SYSNAME=SP2SEG,SYSSIZE=96K, VMSPR2*
 VSYSADR=IGNORE,SYSCYL=,VSYSRES=, VMSPR2*
 SYSVOL=VMM010,SYSSTRT=(223,60),SYSPGCT=48, VMSPR2*
 SYSPGNM=(1280-1327),SYSHRSG=(80,81,82) VMSPR2
 * VMSPR2
 * SP2SEGL AT X'F40000' VMSPR2
 SP2SEGL NAMESYS SYSNAME=SP2SEGL,SYSSIZE=96K, VMSPR2*
 VSYSADR=IGNORE,SYSCYL=,VSYSRES=, VMSPR2*
 SYSVOL=VMM018,SYSSTRT=(263,1),SYSPGCT=48, VMSPR2*
 SYSPGNM=(3904-3951),SYSHRSG=(244,245,246) VMSPR2

 The SP2 Program Directory says that, "The first 64K segment after the CMS
 saved system is reserved for CMS's use." It warns you to leave that
 segment empty, rather than allocating it to a shared segment. But, if you
 are virtual memory constrained, you may not find it acceptable to lose that
 segment. The basis for the warning is that CMSXGEN (and similar EXECs)
 cannot build a shared segment immediately above the running CMS nucleus. _____
 When CMSXGEN tries to load the contents of the segment into virtual storage
 before doing the SAVESYS for the shared segment, it gets the error message
 DMSLIO109S VIRTUAL STORAGE CAPACITY EXCEEDED. This is because CMSXGEN
 loads into free storage without first allocating that storage -- a highly
 dubious technique. Fortunately, DMSLDR won't allow the free storage chain
 element right above the nucleus to be overlaid, so it issues the error
 message and quits. But, if you can contrive to build a segment immediately
 above the nucleus, CMS is perfectly happy to use it. The obvious way to do
 this is to build the shared segment while running some CMS nucleus other
 than the one the segment abuts. I have tried this and it works, so these
 are the commands for rebuilding the shared segments at their new addresses:

 PAGE 92

 define storage 16m
 ipl sp2cms
 access 491 a (noprof
 access 190 b/a
 cmsxgen 500000 sp2seg
 cmsxgen f40000 sp2segl

 You should be aware of a mysterious warning in the Program Directory which
 says that due to a bug in DMSLDR you must not save shared segments anyplace
 above the location of the nucleus you are running from. I have tried this
 only with the CMSSEG for my large CMS nucleus, and I had no trouble with
 that, but apparently there is a sporadic problem with other segments, such
 as APL or GDDM. The fix is VM16182.

 F. What To Do If You Don't Like the Default Nucleus Location or Size F. What To Do If You Don't Like the Default Nucleus Location or Size

 Moving the CMS nucleus is not so easy as moving the shared segment. The
 locations of the various parts of the CMS nucleus in SP2 are determined by
 LOADER SLC ("set location counter") statements inserted here and there in
 the loadlist EXEC. That's why there are different loadlists for the large
 and small nuclei -- the SLCs are different. The address of the start of
 the main portion of the nucleus is determined by an SLC entry in the
 loadlist just before the entry for DMSALP ("ALP" is short for "alpha").
 This is the part of the small CMS loadlist (CMSLOAD EXEC) that defines the
 location of DMSALP:

 +---+
 | . |
 | . |
 | &1 &2 &3 DMSINI |
 | ******** DMSZIT MUST BE THE LAST MODULE BEFORE DMSALP |
 | &1 &2 &3 DMSZIT |
 | &1 &2 &3 SLC L1D0000 |
 | ******** DMSALP MUST BE THE FIRST MODULE IN THE NUCLEUS |
 | &1 &2 &3 DMSALP |
 | &1 &2 &3 DMSCAT |
 | . |
 | . |
 +---+

 Actually, the loadlist record that says "SLC L1D0000" is not an SLC
 statement itself; it's the name of a CMS file which contains an SLC
 statement:

 FILE: SLC L1D0000 S1 ____ ___ _______ __

 +----------------+
 | bSLC 1D0000 | ("b" = X'02')
 +----------------+

 PAGE 93

 If you want the small CMS nucleus to start somewhere other than at 1D0000,
 you must change that entry to point to a new SLC file which you've built
 and put on the S-disk. You must also make a corresponding change to the
 SLC entry just before DMSOME ("omega"), which marks the end of the nucleus:

 +---+
 | . |
 | . |
 | &1 &2 &3 DMSVSR |
 | ******** DMSSIG MARKS THE END OF EXECUTABLE CODE |
 | &1 &2 &3 DMSSIG |
 | &1 &2 &3 SLC L200000 |
 | ******** DMSOME MARKS THE END OF THE NUCLEUS |
 | &1 &2 &3 DMSOME |
 | &1 &2 &3 LDT STARTADR |
 +---+

 Expanding the CMS nucleus to make more room for the shared SSTAT and YSTAT
 also involves modifying the CMS loadlists. The shared SSTAT and YSTAT are
 now stored between DMSSIG ("sigma") and DMSOME in the CMS nucleus. To
 expand the space available for the SSTAT and YSTAT, you increment that last
 SLC by one segment. You must also, of course, modify your DMKSNT entry for
 the saved system to show that it contains the additional segment.

 The modified DMKSNT entries for our two saved CMS systems are as follows:

 * VMSPR2
 * DMSALPHA AT X'530000' VMSPR2
 SP2CMS NAMESYS SYSNAME=SP2CMS,SYSSIZE=256K, VMSPR2*
 VSYSADR=190,VSYSRES=XXX974,SYSCYL=031, VMSPR2*
 SYSVOL=VMM018,SYSSTRT=(262,1),SYSPGCT=89, VMSPR2*
 SYSPGNM=(0-4,14-33,1328-1391), VMSPR2*
 SYSHRSG=(83,84,85,86) VMSPR2
 * VMSPR2
 * DMSALPHA AT X'F00000' VMSPR2
 SP2CMSL NAMESYS SYSNAME=SP2CMSL,SYSSIZE=256K, VMSPR2*
 VSYSADR=190,VSYSRES=XXX974,SYSCYL=031, VMSPR2*
 SYSVOL=VMR001,SYSSTRT=(327,1),SYSPGCT=89, VMSPR2*
 SYSPGNM=(0-4,14-33,3840-3903), VMSPR2*
 SYSHRSG=(240,241,242,243) VMSPR2

 Note that both saved systems have been expanded by one segment and that the
 location of the small saved system has been changed.

 Modifying the two loadlist EXECs involves the same tedious process we went
 through to modify SYSTEM NETID. The virgin loadlists must be saved on the
 CMS base source disk. Then, auxfiles must be created to list the updates
 for sequencing and modifying the loadlists. Finally, updated copies are
 built on the A-disk and moved to the S-disk. The one extra twist in this
 case is that you must also create new SLC files if there don't happen to be
 existing ones for the addresses you need. (Remember that you need a X'02'
 immediately preceding the characters "SLC".) The files and commands needed
 for making these changes to the two CMS nuclei follow:

 PAGE 94

 FILE: CMSLOAD AUXLCL ____ _______ ______

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXLCL $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 EXPAND - 08/07/82 - EXPAND SMALL NUCLEUS SSTAT/YSTAT BY ONE SEGMENT
 SYSGEN - 08/07/82 - MOVE SMALL NUCLEUS TO FIT ABOVE 5-MEG MACHINE
 SEQUENCE - 08/07/82 - SEQUENCE LOADLIST EXEC SINCE IBM WON'T

 FILE: CMSLOAD SYSGEN ____ _______ ______

 ./ R 00018000 $ 18100 100
 &1 &2 &3 SLC L530000
 ./ R 00079000 $ 79100 100
 &1 &2 &3 SLC L560000

 FILE: CMSLOAD EXPAND ____ _______ ______

 ./ R 00079100 $ 79200 100
 &1 &2 &3 SLC L570000

 FILE: CMSLOADL AUXLCL ____ ________ ______

 $$*$*$*$*$*$*$*$*$*$*$*$*$*$ AUXLCL $*$*$*$*$*$*$*$*$*$*$*$*$*$*$*$*
 EXPAND - 08/07/82 - EXPAND LARGE NUCLEUS SSTAT/YSTAT BY ONE SEGMENT
 SEQUENCE - 08/07/82 - SEQUENCE LOADLIST EXEC SINCE IBM WON'T

 FILE: CMSLOADL EXPAND ____ ________ ______

 ./ R 00079000 $ 79100 100
 &1 &2 &3 SLC LF40000

 FILE: SLC L530000 S1 SLC L570000 S1 SLC LF40000 S1 ____ ___ _______ __ ___ _______ __ ___ _______ __

 +----------------+ +----------------+ +----------------+
 | bSLC 530000 | | bSLC 570000 | | bSLC F40000 | "b" = X'02'
 +----------------+ +----------------+ +----------------+

 access 190 f/a
 access 495 d
 copy cmsload exec f = = d (olddate
 copy cmsloadl exec f = = d (olddate
 access 495 d/a
 update cmsload exec d dmssplcl (ctl rep
 update cmsloadl exec d dmssplcl (ctl rep
 access 190 f
 copy cmsload exec a = = f1 (olddate replace
 copy cmsloadl exec a = = f1 (olddate replace
 access 190 f/a

 PAGE 95

 When you have gotten the loadlists updated, rebuild your CP system with the
 new definitions in DMKSNT and then rebuild the CMS nuclei and saved
 systems, using the same commands you used in building them originally.
 When you are ready to install a new PUT, you will have to apply these same
 updates to the loadlists from the PUT. Having the auxfiles and the update
 files sitting on your A-disk should serve as a reminder to do this.

 G. Notes on Updating a Production SP2 CMS System G. Notes on Updating a Production SP2 CMS System

 Because lots of new function tends to mean lots of new bugs, you'll want to
 be sure to get the IBM and VMSHARE buckets for the new system and apply the
 corrective service suggested there. When you are happy with the new
 system, you can make it available to your users to try out. Eventually,
 you'll want to make it the production CMS system. The procedure will be
 exactly the same as the one used in converting the "NEWCMS" system to "CMS"
 back on Release 1, except that now you may be putting both "CMS" and "CMSL"
 into production.

 Once it's in production, though, you're likely to encounter a few more
 glitches, so I'll tell you what I've learned so far about updating an SP2
 CMS on the fly. Most of what I told you about updating SP1 CMS still
 applies, but there are some changes.

 The situation with the HELP files is completely different, since they are
 no longer on the S-disk. Changing the HELP disk does not cause the
 problems for HELP that changing the S-disk caused in Release 1; that is,
 your users no longer get I/O error messages because their disk origin
 pointer is invalid. Anyone who uses HELP has the HELP disk accessed and
 has a directory of the mode 2 HELP files in his virtual memory. Therefore,
 if you want to change a mode 2 HELP file, you should rename it, so that it
 can still be found at its old location by users who have old directories.
 The mode 1 HELP files, which are the vast majority, are searched for every
 time the user enters HELP, so you can add or replace them more easily, but
 it's still better to rename one you are replacing, rather than erasing it,
 in case someone else is reading it right at that moment. If you add a mode
 2 HELP file, users with old HELP disk directories will be able to find it.

 The situation with the shared SSTAT and YSTAT has also changed. Since
 there is no longer a CMSZER shared segment, you no longer do CMSZGENs or
 DMSZESs to get the shared SSTAT and YSTAT back in synch with the S- and Y-
 disks. The shared SSTAT and YSTAT are now part of the CMS saved system.
 So, when you change the S-disk or the Y-disk, you must do SAVESYSs to
 resave your CMS saved systems. In SP2 your users get the message
 DMSINS100W SHARED SSTAT/YSTAT NOT AVAILABLE any time you make a change to
 the S-disk or Y-disk, even if it's only a change to a mode 1 file. This is
 because DMSINS now checks for whether the shared SSTAT and YSTAT are
 current by comparing the date the disk was last updated with the disk
 update date saved in the saved system. This makes changing the system
 disks on the fly less graceful than it used to be. You will even find that
 you make the shared SSTAT or YSTAT unavailable by simply accessing the S-
 or Y-disk in R/W mode and releasing it, without making any changes.

 PAGE 96

 One other difference which affects the process of updating a production CMS
 system is that CMSSEG is no longer detached after every use. As far as I
 have been able to learn, the other rules for changing CMS still apply.

 H. Miscellaneous Caveats H. Miscellaneous Caveats

 There are a few other points you should be aware of:

 The base source for Release 2 corresponds to SLU 12 for Release 1. If you
 are at a higher level than that on SP1, you may find that you need to go
 back and apply some of the same corrective service to SP2 that you had
 applied to SP1 when you were at an earlier level.

 A few of the SP2 CMS base source files were sequenced improperly; there are
 fixes for this problem on the first SP2 PUT.

 In SP2, a number of CMS commands are implemented as nucleus extensions. If
 you are testing a fix or mod to one of these, you may have to do a NUCXDROP
 to get rid of the old version before you can test your new version. When
 in doubt, do a NUCXMAP.

 If you have a large number of mode 2 files on your S- and Y-disks, you may
 find that you cannot IPL an SP2 CMS system by address. The symptom is
 messages DMSFRE159T and DMSFRE162T. The circumvention is to DETACH your
 19E disk. The fix is VM16392, which has a pre-requisite of VM16189.

 Some other APARs which may be of interest include: VM16450, which is a
 performance fix for FILELIST, and VM16189, which is a fix for abends caused
 by IPLing an SP2 CMS system by name and specifying an IPL parm greater than
 thirty-six characters in length.

 If you use the new SENDFILE command to send data to an SP1 CMS system, be
 sure to specify the "OLD" parameter in the SENDFILE command.

 If your local mods or programs stop working, two things to check out are
 the fact that the handling of mode bytes is different in SP2 and the fact
 that the "CONCCWS" field has been moved from NUCON to OPSECT. In general,
 programs which reference fields in OPSECT need to be reassembled.

 You may also have trouble with a couple of widely-used mods from the
 Waterloo tape. In particular, RESLIB doesn't seem to work unless the CMS
 nucleus is at the top of the virtual machine or beyond it. The Cornell
 CARD and FCOPY modules won't run correctly on an SP2 CMS system unless you
 put a dummy DMSZES MODULE on your S-disk.

 PAGE 97

 APPENDIX A APPENDIX A

 Applying Service to Other Levels of VM Applying Service to Other Levels of VM

 +--+
 +--+
 | |
 | Naming Conventions for Current Levels of VM | ______ ___________ ___ _______ ______ __ __
 | |
 +--+
 +----------+----------+----------+----------+----------+----------+----------+
 | | | | | | | |
 | | REL 6 | BSEPP 2 | SEPP 2 | SP 1 | HPO 1 | SP 2 |
 | | | | | | | |
 +----------+----------+----------+----------+----------+----------+----------+
 +----------+----------+----------+----------+----------+----------+----------+
 | TEXT | TEXT | TEXT | TEXT | TEXT | TXTH1 | TEXT |
 | FILES | TXTAP | TXTAP | TXTAP | TXTAP | TXTH1A | TXTAP |
 | | | | | TXTMP | TXTHIM | TXTMP |
 +----------+----------+----------+----------+----------+----------+----------+
 | AUXFILES | AUXR60 | AUXB20 | AUXS20 | AUXSP | AUXHP1 | AUXSP |
 | | | | | AUXSP11 | | |
 | | AUXM60 | AUXMB20 | | AUXMSP | | AUXMSP |
 | | | | | AUXMSP11 | | |
 +----------+----------+----------+----------+----------+----------+----------+
 | UPDATES | RnnnnnDx | NnnnnnDx | KnnnnnDK | SnnnnnDx | AnnnnnDK | LnnnnnDx |
 | | MnnnnnDS | CnnnnnDS | | EnnnnnDS | | ZnnnnnDS |
 +----------+----------+----------+----------+----------+----------+----------+
 | CP | DMKMAC | CPBSE | CPSEP | DMKSP | DMKH1 | DMKSP |
 | MACLIBS | DMKAMAC | DMKMAC | DMKMAC | DMKSPA | DMKSP | DMKSPA |
 | | | DMKAMAC | DMKAMAC | DMKSPM | DMKSPA | DMKSPM |
 | | | | | DMKMAC | DMKSPM | DMKMAC |
 | | | | | | DMKMAC | |
 +----------+----------+----------+----------+----------+----------+----------+
 | CMS | CMSLIB | CMSBSE | | DMSSP | | DMSSP |
 | MACLIBS | | CMSLIB | | CMSLIB | | CMSLIB |
 +----------+----------+----------+----------+----------+----------+----------+
 | CP | DMKR60 | DMKB20 | DMKS20 | DMKSP | DMKH1 | DMKSP |
 | CNTRL | DMKR6A | DMKB2A | DMKS2A | DMKSPA | DMKH1A | DMKSPA |
 | FILES | | | | DMKSPM | DMKH1M | DMKSPM |
 +----------+----------+----------+----------+----------+----------+----------+
 | CMS | DMSR60 | DMSB20 | | DMSSP | | DMSSP |
 | CNTRL | DMSM60 | DMSMB20 | | DMSMSP | | DMSMSP |
 | FILES | | | | | | |
 +----------+----------+----------+----------+----------+----------+----------+
 +--+

 PAGE 98

 Service Disk Layouts for "Delta" Systems Service Disk Layouts for "Delta" Systems

 Some VM systems are shipped to you as "deltas" to another system.
 Specifically, BSEPP Release 2 and SEPP Release 2 are shipped in the form of
 updates to be applied on top of a VM Release 6 system, and HPO Release 1 is
 shipped as updates to be applied on top of a VM/SP Release 1 system. This
 makes applying service slightly more complicated for these systems than it
 is for VM/SP. Note that neither SEPP nor HPO Release 1 "versions" CMS, so
 you use the next lower system level for CMS, i.e., you use VM/SP CMS with
 HPO and BSEPP CMS with SEPP.

 The standard way of maintaining a delta system is simply to load the
 corresponding files for the two pieces of the system onto the same service
 disks. Thus, in the case of an HPO system, the base disk should include
 the base ASSEMBLE, COPY, MACRO, TEXT, TXTAP, TXTMP, UPDTAP, and UPDTMP
 files from the base VM/SP system. It should also contain the original
 UPDTHP1 files from the HPO distribution tape, as well as the textfiles from
 that tape (TXTH1 and TXTH1A). The PUT disk should contain the SP auxfiles,
 updates, and textfiles from the SP portion of the PUT, plus the HPO
 auxfiles, updates, and textfiles from the HPO portion of the PUT. The HPO
 auxfiles are complete replacements for the SP auxfiles, but only for the
 "HPO-versioned" modules. An HPO auxfile may list both SP fixes (S12345DK)
 and HPO fixes (A12222DK). In some cases, there will be two different
 versions of the same fix for SP and HPO; these may be distinguished by the
 prefix on the filetypes.

 Exactly the same scheme is used with a BSEPP or SEPP system. You load the
 Release 6 tape and the base (B)SEPP tape onto your base service disk, and
 you load the Release 6 files and the (B)SEPP files from the PUT onto your
 PUT disk. There is one difference, however, from the HPO scheme; all of
 IBM's textfiles for a (B)SEPP system are named TEXT or TXTAP. Originally,
 the (B)SEPP-versioned textfiles were named TXTB20 and TXTB2A or TXTS20 and
 TXTS2A. But then somebody at IBM who didn't understand what was going on
 decided that the (B)SEPP-versioned textfiles should be renamed. This
 blunder has been causing a good many systems around the world to crash in
 obscure ways for a couple of years now. If you are maintaining a (B)SEPP
 system, be very careful to load the Release 6 textfiles from a given PUT
 before you load the (B)SEPP textfiles, so that the (B)SEPP textfiles will
 overlay the corresponding vanilla textfiles, rather than the other way
 around. And don't use the SELECT option of VMFPLC2 LOAD, either. (That's
 the option that says not to replace a file on the disk with a file from the
 tape with the same name if they have the same timestamp.) There have been
 cases of the vanilla and (B)SEPP textfiles having the same timestamp; if
 SELECT is specified in such a case, the resulting system is missing a
 (B)SEPP update and will tend to be unstable. To avoid such problems, many
 (B)SEPP installations have taken to loading the (B)SEPP textfiles from the
 PUT onto one minidisk and the vanilla textfiles from the PUT onto another
 disk later in their standard disk search order.

 PAGE 99

 Preferred Auxfiles Preferred Auxfiles

 One new concept you need to master in order to understand how to apply
 service to a delta system is the "preferred auxfile". As mentioned above,
 the delta systems provide auxfiles which completely replace the
 corresponding base system auxfiles, but only for those modules which are
 "versioned" by the delta system. This means that there needs to be a way
 of saying in the control file that the base auxfile should be used only if
 there is no delta auxfile for that module. This is done by specifying a
 preferred auxfile, as in the CP control file for BSEPP Release 2:

 FILE: DMKB20 CNTRL ____ ______ _____

 TEXT MACS
 TEXT AUXB20
 TEXT AUXR60 AUXB20

 That last line means that the updates listed in the AUXR60 auxfile are to
 be applied unless there is an AUXB20 auxfile for the module, in which case
 the whole line is to be ignored. The second line from the bottom then says
 to apply the updates listed in the AUXB20 auxfile, if there is one. There
 can be more than one preferred auxfile listed in a control file statement.
 If any of the preferred auxfiles exists for the module, then the statement
 is skipped.

 One further wrinkle in using UPDATE with control files: UPDATE records
 each auxfile name as it is being used and does not use it again, even if
 the control file specifies that auxfile again. This can be seen in the
 following control file, which is used for HPO Release 1 for MP systems. It
 is included as an exercise for the reader:

 FILE: DMKH1M CNTRL ____ ______ _____

 TEXT MACS
 H1M AUXH1
 H1A AUXH1 UPDTMP
 H1 AUXH1 UPDTAP UPDTMP
 MP AUXSP11 AUXH1
 AP AUXSP11 AUXH1 UPDTMP
 TEXT AUXSP11 AUXH1 UPDTAP UPDTMP
 MP UPDTMP
 AP UPDTAP
 TEXT AUXSP

 Hint: All HPO updates are listed in auxfiles named AUXH1, but it must be
 possible to use this control file to produce HPO-versioned textfiles named
 TXTH1, TXTH1A, or TXTH1M (as appropriate) and to produce textfiles for non-
 versioned modules named TEXT, TXTAP, or TXTMP (as appropriate).

 PAGE 100

 APPENDIX B APPENDIX B

 The FRE013 Trap The FRE013 Trap

 This version of the "FRE013 trap" is current for a VM/SP Release 1, SLU 7,
 system running on a UP without ECPS microcode. Versions of this trap for
 other configurations are available from the IBM Support Center.

 FILE: DMKFRE FRE013 ____ ______ ______

 ./ I 1680000 $ 1680100 100
 EJECT
 *************DMKFRE FRE013 TRAP FOR FREE STORAGE PROBLEMS**************
 * VM/SP VERSION - UNI-PROCESSOR *

 ***** MUST ALSO TURN OFF DMKDSP1, DMKDSP2, DMKUNTFR ECPS ******
 ***** INSTRUCTIONS IN DMKDSP AND DMKUNT FOR MICROCODED ******
 ***** CPU TYPES 3138, 3148, 303X, 4331, 4341, ETC. ******

 ***** THIS VERSION HAS THE FOLLOWING PRE-REQUISITES IN ORDER ******
 ***** TO INSTALL AND EXECUTE SUCCESSFULLY: ******
 ***** VM13017 PUTXXXX UVXXXXX - ADD LARGER BUFFER TO SUBPOOL ******
 ***** VM14280 PUTXXXX UVXXXXX - MICROCODE FOR TCH/FREE/FRET ******
 ***** VM12640 PUTXXXX UVXXXXX - CLEAN UP EXTENDED PAGES ******

 * TRAP OPERATION: *
 * A) TURNS OFF ECPS FOR 'FREE' AND 'FRET' *
 * B) FOR EACH 'FREE' REQUEST: *
 * 1) EXPANDS EACH STORAGE REQUEST BY TWO DOUBLEWORDS *
 * 2) PUTS 'GVN' + REQUEST LENGTH + CALLER'S R14 IN THE FIRST *
 * ADDITIONAL DOUBLEWORD *
 * 3) IF THE CALLER IS PAGEABLE, GETS THE MODULE NAME AT THE START *
 * OF THE PAGE IN WHICH THE MODULE RESIDES, AND PUTS IT IN THE *
 * SECOND ADDITIONAL DOUBLEWORD *
 * 4) RESETS FREE STORAGE BLOCK TO X'EEEEEE...' *
 * C) FOR EACH 'FRET' REQUEST: *
 * 1) CHECKS THE REQUEST LENGTH AGAINST THE SAVED LENGTH *
 * 2) CHECKS TO SEE THAT THE EYECATCHER IS 'GVN' IN THE FIRST *
 * ADDITIONAL DOUBLEWORD *
 * D) ABENDS FROM ILLEGAL SITUATIONS (FRET REQUESTS ONLY): *
 * ABENDFRE013 - STORAGE NOT MARKED 'GVN' ON CALL TO FRET *
 * ABENDFRE033 - FRET SIZE NOT THE SAME AS EYECATCHER SIZE *

 ./ R 2965000 $ 2966000
 DC X'070007000700' SHUT OFF ECPS 'FREE' @FRE13SP
 ./ I 3090000 $ 3091000
 LA R2,2(,R2) ADD 2 TO REQUESTED SIZE @FRE13SP
 ./ I 3280000 $ 3281000 1000
 L R15,SUBSIZES(R7) SET TO FULL SUBPOOL SIZE @FRE13SP
 SLL R15,3 TIMES 8 FOR NUMBER OF BYTES @FRE13SP
 B FREE20CN @FRE13SP

 PAGE 101

 ./ I 3300000 $ 3300100 100
 *********************** FRE013 TRAP ************************ @FRE13SP
 *** FILL BLOCK WITH X'EEEEEEEE' S @FRE13SP
 *** MOVE EYECATCHER INTO FIRST WORD AFTER REQUESTED STORAGE, @FRE13SP
 *** CALLER'S R14 + LENGTH (FROM R0) INTO THE 2ND WORD @FRE13SP
 *** CALLING PGM'S NAME (IF PGM IS PAGEABLE) INTO WORDS 3+4 @FRE13SP
 L R15,FREEWORK GET FULL SUBPOOL OR BLOCK SIZE @FRE13SP
 FREE20CN L R14,GPR1 POINT TO FREE STORAGE @FRE13SP
 L R2,FREER0 GET ORIGINAL STORAGE REQUEST @FRE13SP
 SLL R2,3 GET NUMBER OF REQUESTED BYTES @FRE13SP
 AR R2,R14 POINT TO END OF REQSTD STORAGE @FRE13SP
 L R1,TESTPATT SET UP PATTERN OF EEEEEEEE'S @FRE13SP
 MVCL R14,R0 CLEAR THE STORAGE TO EEEEEE'S @FRE13SP
 L R3,EYEGVN AND SET UP TRAP DATA @FRE13SP
 L R4,FREER14 POINT TO CALLER'S RETN REGISTER @FRE13SP
 CL R4,APAGCP IS CALLER PAGEABLE? @FRE13SP
 BL NOTPAG NO, SKIP SAVING THE MODULE NAME @FRE13SP
 N R4,XPAGNUM YES, FIND BEGINNING OF MODULE @FRE13SP
 LM R6,R7,0(R4) GET MODULE NAME AT BEG OF MODULE @FRE13SP
 STM R6,R7,8(R2) SAVE IT BEHIND THE EYECATCHER @FRE13SP
 L R4,FREER14 RESET R4 TO CALLER'S R14 @FRE13SP
 NOTPAG DS 0H HERE IF CALLER IS NOT PAGEABLE @FRE13SP
 ICM R4,8,FREER0+3 INCLUDE COUNT IN DOUBLE WORDS @FRE13SP
 STM R3,R4,0(R2) SAVE CONSTANT AND RETURN REG @FRE13SP
 ./ I 5130000 $ 5131000
 ST R2,FREEWORK SAVE FULL BYTE CNT OF STORAGE BLK @FRE13SP
 ./ I 6110000 $ 6111000
 ST R2,FREEWORK SAVE FULL BYTE CNT OF STORAGE BLK @FRE13SP
 ./ I 8610000 $ 8611000
 ST R2,FREEWORK SAVE FULL BYTE CNT OF STORAGE BLK @FRE13SP
 ./ I 11462500 $ 11462600
 LA R10,FR14 SET R10 TO GO TO FRE013 TRAP @FRE13SP
 ./ R 11525000 $ 11526000
 DC X'070007000700' SHUT OFF ECPS 'FRET' @FRE13SP
 ./ R 11550000 $ 11551000 1000
 LM R7,R9,ADCONFRT INIT R7-R9 FOR FRET PROCESS @FRE13SP
 LA R10,FR14 SET R10 TO GO TO FRE013 TRAP @FRE13SP
 ./ I 11950000 $ 11950100 100
 FR14 DS 0H START OF FRE13 TRAP CATCH LOGIC @FRE13SP
 LR R7,R0 SIZE INTO REG7 @FRE13SP
 SLL R7,3 CONVERT TO BYTES @FRE13SP
 L R8,EYEGVN GET THE 'GVN' EYECATCHER @FRE13SP
 C R8,0(R7,R1) DID WE FIND 'GVN'? @FRE13SP
 BE CHECKSZ YES, CONTINUE @FRE13SP
 ABEND 13 NO, ABENDFRE013 @FRE13SP
 CHECKSZ DS 0H CHECK THE SIZE @FRE13SP
 SR R8,R8 ZERO REG8 @FRE13SP
 IC R8,4(R7,R1) GET SIZE FROM EYECATCHER @FRE13SP
 LR R9,R0 GET SIZE PASSED TO DMKFRET @FRE13SP
 N R9,SIZEMASK STRIP OFF ALL BUT LAST BYTE @FRE13SP
 CLR R9,R8 IS IT THE SAME? @FRE13SP
 BE SETEYE YES - GO RESET EYECATCHER @FRE13SP
 ABEND 33 NO - ABEND FRE033 @FRE13SP
 SETEYE DS 0H RESET EYECATCHER @FRE13SP

 PAGE 102

 L R8,EYEFREE REPLACE 'GVN' WITH 'FREE' @FRE13SP
 ST R8,0(R7,R1) TO TRAP 2ND FRET OF SAME BLOCK @FRE13SP
 AL R0,F2 BUMP COUNT UP TO FULL FRET SIZE @FRE13SP
 LR R2,R0 FRET01 NEEDS LENGTH IN REG2
 LA R9,DMKFRETE GET ADDRESS OF FRETE
 C R9,FREER15 DID WE COME IN AT FRETE?
 BE FRET01 YES, GO TO FRET01 TO FINISH
 LM R7,R10,ADCONFRT RELOAD REGS FOR FRET PROCESS @FRE13SP
 BR R10 GO COMPLETE FRET PROCESSING @FRE13SP
 EJECT
 ./ I 15010000 $ 15011000 1000
 ******************* CONSTANTS FOR FRE13 TRAP **************************
 DS 0F ...FOR ALIGNMENT @FRE13SP
 SIZEMASK DC XL4'000000FF' TO ISOLATE LAST BYTE OF SIZE @FRE13SP
 TESTPATT DC XL4'EE000000' PATTERN CHARACTERS FOR GIVEN AREA@FRE13SP
 EYEGVN DC XL4'9AC7E5D5' EYECATCHER 'GVN' @FRE13SP
 EYEFREE DC XL4'C6D9C5C5' EYECATCHER 'FREE' @FRE13SP

 FILE: DMKFRE FRE13X ____ ______ ______

 ./ * MODIFY FRE013 TRAP TO ADD ONLY ONE DOUBLEWORD, RATHER THAN FRE13X
 ./ * TWO, TO EACH FREE REQUEST. FRE13X
 ./ * FRE13X
 ./ R 03091000 $ 03091100 100 FRE13X
 LA R2,1(,R2) ADD 1 TO REQUESTED SIZE. FRE13X
 ./ D 03300500 $ FRE13X
 ./ D 03301500 03302100 $ FRE13X
 ./ R 11951900 $ 11951910 10 FRE13X
 AL R0,F1 BUMP COUNT TO FULL FRET SIZE. FRE13X

 FILE: DMKFRE FRE13Y ____ ______ ______

 ./ * MODIFY FRE013 TRAP NOT TO SET STORAGE TO X'EE'. FRE13Y
 ./ * FRE13Y
 ./ D 03281000 03282000 $ FRE13Y
 ./ D 03300200 $ FRE13Y
 ./ D 03300600 $ FRE13Y
 ./ D 03301100 03301200 $ FRE13Y
 ./ D 15014000 $ FRE13Y

 PAGE 103

 APPENDIX C APPENDIX C

 Mod to Resolve External References in Small CP Nucleus Mod to Resolve External References in Small CP Nucleus

 This modification is for VM/SP Release 1, SLU 7. It is based on a
 suggestion from Jim Best (PWC). It builds a dummy module, DMKRES, which
 contains ENTRY statements for all the external references which are
 normally unresolved in a CP nucleus built with the "small CP option". This
 zero-length module must be placed at address zero, so that these references
 are "resolved" to zeroes. WARNING: If you put DMKRES at any address other
 than zero, your system will crash a lot.

 FILE: CPLOADSM SMALCP ____ ________ ______

 ./ * INSERT THE DUMMY MODULE 'DMKRES' BETWEEN DMKLD00E AND SMALCP
 ./ * DMKPSA IN THE SMALL CP LOADLIST, IN ORDER TO RESOLVE SMALCP
 ./ * ALL THE NORMALLY-UNRESOLVED EXTERNAL REFERENCES IN THE SMALCP
 ./ * SMALL CP NUCLEUS TO ZERO. SMALCP
 ./ * SMALCP
 ./ I 00006000 $ 00006500 500 SMALCP
 &1 &2 &3 DMKRES

 FILE: DMKRES ASSEMBLE ____ ______ ________

 RES TITLE 'DMKRES - RESOLVE NORMALLY UNRESOLVED REFERENCES' SMALCP
 DMKRES CSECT , SMALCP
 SPACE 1 SMALCP
 ENTRY DMKBSCER,DMKDADER,DMKFPS SMALCP
 ENTRY DMKMHCIN,DMKMHCRE,DMKMHVSM SMALCP
 ENTRY DMKQVMCU,DMKQVMEP,DMKQVMRT,DMKQVMTS SMALCP
 ENTRY DMKRGAIN,DMKRGBEN,DMKRGBFM,DMKRGBIC SMALCP
 ENTRY DMKRGC,DMKRGDOB,DMKRGDOI SMALCP
 ENTRY DMKRNH,DMKRNHIC,DMKRNHIN,DMKRNHND SMALCP
 ENTRY DMKRNHTR,DMKSLC,DMKSNTRN SMALCP
 ENTRY DMKSNTQN SMALCP
 SPACE 1 SMALCP
 ENTRY DMKSSS,DMKSSSHV,DMKSSSMQ,DMKSSSEN,DMKSSSVA SMALCP
 ENTRY DMKSSSDE,DMKSSSL1,DMKSSSL2,DMKSSSL3 SMALCP
 ENTRY DMKSSSUS,DMKSSSAS,DMKSSSLN,DMKSSSRL SMALCP
 ENTRY DMKSSSVM,DMKSSTHV,DMKSSTUS SMALCP
 ENTRY DMKSSUI1,DMKSSUI2,DMKSSUCF,DMKSSULO SMALCP
 SPACE 1 SMALCP
 ENTRY DMKTRKIN,DMKTRKFP,DMKTRKVA SMALCP
 SPACE 1 SMALCP
 ENTRY DMKVCPIL,DMKVCRMT,DMKVCRNR,DMKVCRRD,DMKVCRWT SMALCP
 ENTRY DMKVCT,DMKVCTCH,DMKVCTCN,DMKVCTDA,DMKVCTEN SMALCP
 ENTRY DMKVCTER,DMKVCTLO,DMKVCTQS SMALCP
 ENTRY DMKVCTRM,DMKVCTSV,DMKVCVER,DMKVCXIO SMALCP

 PAGE 104

 ENTRY DMKVSC,DMKVSCVR SMALCP
 * SMALCP
 DMKBSCER EQU * SMALCP
 DMKDADER EQU * SMALCP
 DMKFPS EQU * SMALCP
 DMKMHCIN EQU * SMALCP
 DMKMHCRE EQU * SMALCP
 DMKMHVSM EQU * SMALCP
 DMKQVMCU EQU * SMALCP
 DMKQVMEP EQU * SMALCP
 DMKQVMRT EQU * SMALCP
 DMKQVMTS EQU * SMALCP
 DMKRGAIN EQU * SMALCP
 DMKRGBEN EQU * SMALCP
 DMKRGBFM EQU * SMALCP
 DMKRGBIC EQU * SMALCP
 DMKRGC EQU * SMALCP
 DMKRGDOB EQU * SMALCP
 DMKRGDOI EQU * SMALCP
 DMKRNH EQU * SMALCP
 DMKRNHIC EQU * SMALCP
 DMKRNHIN EQU * SMALCP
 DMKRNHND EQU * SMALCP
 DMKRNHTR EQU * SMALCP
 DMKSLC EQU * SMALCP
 DMKSNTRN EQU * SMALCP
 DMKSNTQN EQU * SMALCP
 SPACE 1 SMALCP
 DMKSSS EQU * SMALCP
 DMKSSSAS EQU * SMALCP
 DMKSSSDE EQU * SMALCP
 DMKSSSEN EQU * SMALCP
 DMKSSSHV EQU * SMALCP
 DMKSSSLN EQU * SMALCP
 DMKSSSL1 EQU * SMALCP
 DMKSSSL2 EQU * SMALCP
 DMKSSSL3 EQU * SMALCP
 DMKSSSMQ EQU * SMALCP
 DMKSSSRL EQU * SMALCP
 DMKSSSUS EQU * SMALCP
 DMKSSSVA EQU * SMALCP
 DMKSSSVM EQU * SMALCP
 DMKSSTHV EQU * SMALCP
 DMKSSTUS EQU * SMALCP
 DMKSSUCF EQU * SMALCP
 DMKSSUI1 EQU * SMALCP
 DMKSSUI2 EQU * SMALCP
 DMKSSULO EQU * SMALCP
 SPACE 1 SMALCP
 DMKTRKIN EQU * SMALCP
 DMKTRKFP EQU * SMALCP
 DMKTRKVA EQU * SMALCP
 SPACE 1 SMALCP
 DMKVCPIL EQU * SMALCP

 PAGE 105

 DMKVCRMT EQU * SMALCP
 DMKVCRNR EQU * SMALCP
 DMKVCRRD EQU * SMALCP
 DMKVCRWT EQU * SMALCP
 DMKVCT EQU * SMALCP
 DMKVCTCH EQU * SMALCP
 DMKVCTCN EQU * SMALCP
 DMKVCTDA EQU * SMALCP
 DMKVCTEN EQU * SMALCP
 DMKVCTER EQU * SMALCP
 DMKVCTLO EQU * SMALCP
 DMKVCTQS EQU * SMALCP
 DMKVCTRM EQU * SMALCP
 DMKVCTSV EQU * SMALCP
 DMKVCVER EQU * SMALCP
 DMKVCXIO EQU * SMALCP
 DMKVSC EQU * SMALCP
 DMKVSCVR EQU * SMALCP
 SPACE 1 SMALCP
 END DMKRES SMALCP

 FILE: DTVTAB SMALCP ____ ______ ______

 ./ * MAKE IPCS/E UNDERSTAND THAT DMKRES IS FIRST CP MODULE, SMALCP
 ./ * RATHER THAN DMKPSA. SMALCP
 ./ * SMALCP
 ./ R 00090000 $ 90490 490 SMALCP
 CPFIRST DC CL8'DMKRES' 1ST CP NUC MAP MODULE NAME. SMALCP

 PAGE 106

 APPENDIX D APPENDIX D

 Alternate Nucleus Mod, System Numbering Mod, and Alternate Nucleus Mod, System Numbering Mod, and
 EXECs for Building and Installing CP EXECs for Building and Installing CP

 Please note that these modifications and EXECs are included as an example.
 No warranty is implied. These modifications are from a VM/SP Release 1,
 SLU 11, system and have been used for both FBA and CKD sysres devices, on
 MP and UP systems.

 It should be noted that all "alternate nuclei" must be on CP-owned volumes.
 All nuclei must have the same cylinder/block location, the one specified in
 the SYSNUC parm on the SYSRES macro in DMKSYS ASSEMBLE.

 FILE: DMKCKP ALTNC0 A1 ____ ______ ______ __

 ./ * PURPOSE: ALTNC0
 ./ * TO SUPPORT THE 'ALTERNATE NUCLEUS MODIFICATION'. SPECI- ALTNC0
 ./ * FICALLY, TO DIFFERENTIATE BETWEEN THE SYSRES ADDRESS AND ALTNC0
 ./ * THE SYSIPL ADDRESS WHEN CHECKPOINTING AND WARM STARTING, ALTNC0
 ./ * RESPECTIVELY. ALTNC0
 ./ * ALTNC0
 ./ R 00280000 $ 00280010 00000010 ALTNC0
 * SYSWARM AREA OF THE SYSRES PACK. ALTNC0
 ./ R 02790000 02800000 $ 02790010 00000010 ALTNC0
 LH R0,SYSIPLDV GET SYSRES ADDRESS ALTNC0
 ST R0,SYSRES SAVE FOR USE BY IBM CODE ALTNC0
 LH R0,INTTIO GET IPL ADDR LEFT BY 'DMP' OR IPL ALTNC0
 STH R0,SYSIPL AND SAVE FOR ALT. NUCLEUS CODE. ALTNC0
 ./ R 05080000 $ 05080010 ALTNC0
 LH R2,SYSIPL GET IPL DEVICE ADDRESS ALTNC0
 ./ R 09020000 $ 09020010 00000010 ALTNC0
 SYSRES DS F SYSTEM RESIDENCE ADDRESS ALTNC0
 SYSIPL DS F SYSTEM IPL ADDRESS ALTNC0
 * ALTNC0

 FILE: DMKCPI ALTNC0 A1 ____ ______ ______ __

 ./ * PURPOSE: ALTNC0
 ./ * TO SUPPORT THE 'ALTERNATE NUCLEUS MODIFICATION'. SPECI- ALTNC0
 ./ * FICALLY, TO ELIMINATE THE TEST FOR IPL'ING FROM THE ALTNC0
 ./ * 'SYSRES' VOLUME AND TO SAVE THE ACTUAL IPL ADDRESS IN ALTNC0
 ./ * 'PSAIPLDV' FOR LATER USE BY DMKCKP, DMKCPS AND DMKDMP. ALTNC0
 ./ * ALTNC0
 ./ R 05950000 05970000 $ 5959990 9990 ALTNC0
 STH R10,PSAIPLDV SAVE IPL ADDRESS. ALTNC0
 ./ R 06450000 $ 6454990 4990 ALTNC0
 LH R15,PSAIPLDV GET ADDRESS OF IPL DEVICE. ALTNC0

 PAGE 107

 ./ R 09990000 $ 9994990 4990 ALTNC0
 LH R1,PSAIPLDV ADDRESS OF IPL DEVICE... ALTNC0
 ./ R 10970000 $ 10974990 4990 ALTNC0
 CH R15,PSAIPLDV IPL DEVICE? ALTNC0
 ./ R 18100000 18110000 $ 18100990 990 ALTNC0
 LR R8,R1 STANDARD ADDR FOR RDEVBLOK. ALTNC0
 CALL DMKSCNRD GET SYSRES DEVICE ADDRESS. ALTNC0
 STH R1,SYSIPLDV SAVE A(CKPT/WARM/ERROR VOLUME). ALTNC0
 TM APSTAT1,APUOPER OTHER PROCESSOR OPERATIONAL? ALTNC0
 BZ CPIPU020 NO, THEN NO PREFIXING. ALTNC0
 L R15,PREFIXA YES, GET ABSOLUTE PSA. ALTNC0
 STH R1,SYSIPLDV-PSA(,R15) SAVE VOLUME ADDRESS THERE. ALTNC0
 L R15,PREFIXB AND GET OTHER PROC'S PSA, TOO. ALTNC0
 STH R1,SYSIPLDV-PSA(,R15) SAVE VOLUME ADDRESS FOR HIM.ALTNC0
 CPIPU020 L R15,CPIDMPSD ALSO SAVE A(CKPT/WARM/ERROR... ALTNC0
 STH R1,0(,R15) ...VOLUME) IN 'DMKDMPSD'. ALTNC0
 LH R1,PSAIPLDV LOAD ADDRESS OF IPL DEVICE. ALTNC0
 ./ D 18140000 18150000 ALTNC0

 FILE: DMKCPS ALTNC0 A1 ____ ______ ______ __

 ./ * PURPOSE: ALTNC0
 ./ * TO SUPPORT THE 'ALTERNATE NUCLEUS MODIFICATION'. SPECI- ALTNC0
 ./ * FICALLY, TO ALLOW FOR SAVING THE PATH TO AN IPL VOLUME ALTNC0
 ./ * WHICH IS NOT THE ONE DESIGNATED AS THE 'SYSRES' VOLUME. ALTNC0
 ./ * ALTNC0
 ./ R 05190000 $ 05194990 4990 ALTNC0
 CPSDMPSD DC A(PSAIPLDV-PSA) PNTR TO CCU ADDR OF SYS IPL VOL. ALTNC0

 FILE: DMKDDR ALTNC0 A1 ____ ______ ______ __

 ./ * PURPOSE: ALTNC0
 ./ * TO SUPPORT THE 'ALTERNATE NUCLEUS MODIFICATION'. SPECI- ALTNC0
 ./ * FICALLY, TO ALLOW FOR COPYING A NUCLEUS TO A VOLUME WITH ALTNC0
 ./ * A DIFFERENT VOLID. PREVIOUSLY, THIS RESULTED IN MESSAGE: ALTNC0
 ./ * DMKDDR722E OUTPUT UNIT NOT PROPERLY FORMATTED FOR NUCLEUS. ALTNC0
 ./ * NOTE!!! THE LOCATION OF THE NUCLEUS CYLINDERS IS STILL ALTNC0
 ./ * THAT DEFINED BY THE SYSRES MACRO; ONLY THE VOLID IS ALTNC0
 ./ * IGNORED, AND THE VOLUME MUST STILL BE CP-OWNED. ALTNC0
 ./ * ALTNC0
 ./ I 22700000 $ 22700100 00000100 ALTNC0
 * NOTE THAT THIS CHECK HAS BEEN MODIFIED ALTNC0
 * TO ALLOW THE VOLID TO BE DIFFERENT FROM ALTNC0
 * FROM THAT ON THE INPUT NUCLEUS. ALTNC0
 ./ D 23410000 23430000 $ ALTNC0

 PAGE 108

 FILE: DMKDMP ALTNC0 A1 ____ ______ ______ __

 ./ * PURPOSE: ALTNC0
 ./ * TO SUPPORT THE 'ALTERNATE NUCLEUS MODIFICATION'. SPECI- ALTNC0
 ./ * FICALLY, TO DIFFERENTIATE BETWEEN THE SYSRES ADDRESS AND ALTNC0
 ./ * THE SYSIPL ADDRESS WHEN CHECKPOINTING AND WARM STARTING, ALTNC0
 ./ * RESPECTIVELY. ALTNC0
 ./ * ALTNC0
 ./ R 08950000 $ 8954990 4990 ALTNC0
 LH R1,DMKDMPSD A(CKPT/WARM/ERROR VOLUME). ALTNC0
 ./ R 09460000 $ 9464990 4990 ALTNC0
 LH R1,DMKDMPSD A(CKPT/WARM/ERROR VOLUME). ALTNC0
 ./ R 09730000 $ 9734990 4990 ALTNC0
 LH R15,DMKDMPSD A(CKPT/WARM/ERROR VOLUME). ALTNC0
 ./ R 12350000 $ 12354990 4990 ALTNC0
 LH R1,PSAIPLDV GET A(SYSTEM IPL DEVICE). ALTNC0
 ./ R 12550000 $ 12554990 4990 ALTNC0
 STH R1,PSAIPLDV SAVE PATH'S CCU ADDRESS. ALTNC0
 ./ R 12870000 $ 12874990 4990 ALTNC0
 LH R15,PSAIPLDV GET SYSTEM IPL DEVICE ADDRESS. ALTNC0
 ./ I 13500000 $ 13505000 5000 ALTNC0
 STH R15,DMKDMPSD WANT THIS ADDRESS IN MSG. ALTNC0

 FILE: DMKSAV ALTNC0 A1 ____ ______ ______ __

 ./ * PURPOSE: ALTNC0
 ./ * TO SUPPORT THE 'ALTERNATE NUCLEUS MODIFICATION'. SPECI- ALTNC0
 ./ * FICALLY, TO ALLOW FOR WRITING NEW NUCLEI ON VOLUMES NOT ALTNC0
 ./ * DESIGNATED AS THE 'SYSRES' VOLUME. PREVIOUSLY, THIS ALTNC0
 ./ * RESULTED IN MSG DMKSAV350W DASD 'RADDR' VOLID NOT 'LABEL'. ALTNC0
 ./ * ALTNC0
 ./ * THIS MOD DELETES BOTH THE LABEL COMPARISON TEST AND ALTNC0
 ./ * THE MESSAGE DMKSAV350W. ALTNC0
 ./ * ALTNC0
 ./ R 00460000 $ 00460010 00000010 ALTNC0
 * DMKSAVRS: ALTNC0
 * R10 = IPL DEVICE ADDRESS IN LOW ORDER BYTES ALTNC0
 ./ R 01020000 01100000 $ 01020100 00000100 ALTNC0
 * 3. READ THE VOLUME LABEL, BUT DO NOT CHECK FOR ALTNC0
 * EQUALITY WITH THE SYSRES VOLUME LABEL. ALTNC0
 ./ D 06640000 06660000 $ ALTNC0
 ./ D 09640000 09730000 $ ALTNC0

 FILE: PSA ALTNC0 A1 ____ ___ ______ __

 ./ R 03080000 $ 3081000 1000 ALTNC0
 * SYSIPLDV IS MAINTAINED IN ALL THREE PSA'S. ALTNC0
 SYSIPLDV DS 1H - P*3 ADDRESS OF CKPT/WARM/ERROR DEVICE. ALTNC0
 ./ R 03770000 $ 03770100 00000100 ALTNC0
 * PSAIPLDV IS MAINTAINED IN ALL THREE PSA'S. ALTNC0
 PSAIPLDV DC H'0' SYSTEM IPL DEVICE ADDRESS. ALTNC0
 DC H'0' UNUSED. ALTNC0

 PAGE 109

 FILE: DMKCPE SYSNM0 A1 ____ ______ ______ __

 ./ I 00220000 $ 00220100 100 SYSNM0
 ENTRY DMKCPE# PU CP SYSTEM #. SYSNM0
 ./ I 00270000 $ 00270100 100 SYSNM0
 DMKCPE# DC CL8' 192 ' PU CP SYSTEM NUMBER. SYSNM0

 FILE: DMKCPI SYSNM0 A1 ____ ______ ______ __

 ./ I 28400000 $ 28400100 00000100
 DC C'; SYSTEM #' SYSNM0
 CPINUM DC CL3' ' PU CP SYSTEM NUMBER. SYSNM0
 ./ I 29850000 $ 29850100 00000100
 L R1,PSACPE# R1=A(PU CP SYSTEM NUMBER). SYSNM0
 MVC CPINUM,1(R1) PUT IT INTO THE MESSAGE. SYSNM0

 FILE: DMKPSA SYSNM0 A1 ____ ______ ______ __

 ./ * REASSEMBLED BECAUSE OF ADDITION OF SYSNM0
 ./ * SYSTEM NUMBER VCON TO PSA MACRO SYSNM0

 FILE: PSA SYSNM0 A1 ____ ___ ______ __

 ./ R 03780000 $ 03780100 00000100 SYSNM0
 PSACPE# DC V(DMKCPE#) A(PU CP SYSTEM NUMBER). SYSNM0

 PAGE 110

 FILE: BLDCPT0 EXEC A1 ____ _______ ____ __

 * THIS EXEC BUILDS A TEST CP NUCLEUS ON MAINT'S 844 (MINI-SYSRES).
 *
 *** ALLOCATION FOR MAINT'S 844 (MINI-SYSRES); VOLUME LABEL VMR901
 *** PERM 000 000 ALLOCATION CYLINDER
 *** PAGE 001 001 VIRTUAL FIXED-HEAD PAGING
 *** PERM 002 002 CKPT AREA
 *** PERM 003 003 WARM START AREA
 *** PERM 004 005 CP NUCLEUS
 *** PERM 006 007 ERROR RECORDING CYLS
 *** DRCT 008 009 DIRECTORY
 *** TDSK 010 015 T-DISKS
 *** TEMP 016 022 SECONDARY PAGING, SPOOLING
 *** END OF MINIDISK
 *** PERM 023 554
 *
 *** ALLOCATION FOR MAINT'S 845; VOLUME LABEL VMM911
 *** PERM 000 000 ALLOCATION CYLINDER
 *** PAGE 001 002 VIRTUAL FIXED-HEAD PAGING
 *** TEMP 003 003 SECONDARY PAGING, SPOOLING
 *** PERM 004 005 ALTERNATE CP NUCLEUS
 *** PERM 006 006 SAVED-SYSTEM AREA
 *** PERM 007 007 VMSETUP A-DISK
 *** PERM 008 008 VMSETUP1 A-DISK
 *** PERM 009 009 SAVED-SYSTEM AREA
 *** END OF MINIDISK
 *** PERM 010 554
 *
 *** ALLOCATION FOR MAINT'S 846; VOLUME LABEL VMM913
 *** PERM 000 000 ALLOCATION CYLINDER
 *** PAGE 001 002 VIRTUAL FIXED-HEAD PAGING
 *** TEMP 003 010 SECONDARY PAGING, SPOOLING
 *** END OF MINIDISK
 *** PERM 011 554
 *
 *** ALLOCATION FOR MAINT'S 847; VOLUME LABEL VMM916; 40-CYL T-DISK
 *** PERM 000 000 ALLOCATION CYLINDER
 *** TEMP 001 039 SECONDARY PAGING, SPOOLING
 *** END OF MINIDISK
 *** PERM 040 554
 *
 *** ALLOCATION FOR MAINT'S 947; VOLUME LABEL VMM917; 40-CYL T-DISK
 *** PERM 000 000 ALLOCATION CYLINDER
 *** TEMP 001 019 SECONDARY PAGING, SPOOLING
 *** TDSK 001 039 T-DISKS
 *** END OF MINIDISK
 *** PERM 040 554
 *
 &CONTROL OFF
 &TYPE TEST SYSTEM BUILD
 CP SPOOL CON START NOTERM
 EXEC SYSDISKS
 CP CLOSE RDR

 PAGE 111

 CP PURGE RDR
 CP CLOSE PUN
 CP PURGE PUN
 CP SPOOL 00D *
 VMFLOAD VRLOAD DMKSPTST
 CP SPOOL PRT *
 CP SPOOL CON STOP PURGE TERM
 CP IPL 00C CLEAR

 FILE: BLDCPT1 EXEC A1 ____ _______ ____ __

 * THIS EXEC BUILDS A TEST NON-V=R CP NUCLEUS ON MAINT'S 845 (MINI-SYSRES
 * ALTERNATE).
 *
 &CONTROL OFF
 &TYPE ALTERNATE TEST SYSTEM BUILD
 CP SPOOL CON STA NOTERM
 LINCNTRL LINK
 CP DET 844
 CP LINK MAINT 845 844 MW
 LINCNTRL DET
 EXEC SYSDISKS
 CP CLOSE RDR
 CP PURGE RDR
 CP CLOSE PUN
 CP PURGE PUN
 CP SPOOL 00D *
 VMFLOAD CPLOAD DMKSPTST
 CP SPOOL PRT *
 CP SPOOL CON STOP PURGE TERM
 &TYPE REMEMBER TO: - DET 844 - AND - LINK * 844 844 MW
 CP IPL 00C CLEAR

 PAGE 112

 FILE: SYSDISKS EXEC A1 ____ ________ ____ __

 * THIS EXEC IS USED TO ESTABLISH THE ENVIRONMENT FOR THE VIRTUAL
 * CP TEST SYSTEM
 *
 &CONTROL OFF
 CP SPOOL CON START NOTERM
 CP TERM LINEND
 CP DEF GRAF 020
 CP DEF GRAF 021
 CP DEF GRAF 022
 CP DEF LINE 670 IBM1
 CP DEF LINE 672 IBM1
 CP DEF LINE 692 TELE2
 CP DEF LINE 693 TELE2
 CP DEF LINE 694 TELE2
 CP DEF LINE 695 TELE2
 CP DEF LINE 696 TELE2
 CP DEF LINE 697 TELE2
 CP DEF 3211 602
 CP READY 602
 * NOTE THAT LINCNTRL IS THE LOCAL 'SUPERLINK' COMMAND
 LINCNTRL LINK
 CP LINK VMOSSYS 353 353 MW
 CP LINK VMOSSYS 440 440 RR
 CP LINK VMBACKUP 354 354 RR
 CP LINK VMBACKUP 356 356 RR
 CP LINK VMBACKUP 35A 35A RR
 CP LINK VMBACKUP 443 443 RR
 CP LINK VMBACKUP 840 840 RR
 CP LINK VMBACKUP 841 841 RR
 CP LINK VMBACKUP 842 842 RR
 CP LINK VMBACKUP 843 843 RR
 CP LINK VMBACKUP 940 940 RR
 CP LINK VMBACKUP 941 941 RR
 CP LINK VMBACKUP 942 942 RR
 CP LINK VMBACKUP 943 943 RR
 CP LINK VMBACKUP A65 A60 RR
 CP LINK VMBACKUP A62 A62 RR
 CP LINK VMBACKUP A64 A64 RR
 CP LINK VMBACKUP A6E A6E RR
 CP SPOOL CON STOP TERM PURGE
 &EXIT

 PAGE 113

 FILE: BLDCP0 EXEC A1 ____ ______ ____ __

 * THIS EXEC BUILDS A REAL CP SYSTEM ON MAINT'S 740 (MINI-SYSRES) FROM
 * WHENCE IT IS MOVED TO THE REAL 840 VIA DDR'S COPY NUCLEUS FUNCTION,
 * USING THE 'COPYNUC0' OR 'COPYNUCX' EXEC'S.
 *
 *** ALLOCATION FOR MAINT'S 740 (MINI-SYSRES); VOLUME LABEL VMR001
 *** PERM 000 000 ALLOCATION CYLINDER
 *** PAGE 001 002 VIRTUAL FIXED-HEAD PAGING
 *** PERM 003 003 WARM START AREA
 *** PERM 004 005 CP NUCLEUS
 *** PERM 006 007 ERROR RECORDING CYLS
 *** DRCT 008 009 DIRECTORY
 *** TDSK 010 010 T-DISKS
 *** TEMP 011 014 SECONDARY PAGING, SPOOLING
 *** END OF MINIDISK
 *** PERM 015 554
 *
 *** ALLOCATION FOR MAINT'S 741; VOLUME LABEL VMM011
 *** PERM 000 000 ALLOCATION CYLINDER
 *** TEMP 001 003 SECONDARY PAGING, SPOOLING
 *** PERM 004 005 ALTERNATE CP NUCLEUS
 *** END OF MINIDISK
 *** PERM 006 554
 *
 &TYPE REAL SYSTEM BUILD...
 &CONTROL OFF
 CP SPOOL PRT VMRSCS
 CP SPOOL CON START NOTERM
 *
 * IF "NOINC" OPTION SPECIFIED, BYPASS INCREMENTING OF CP NUCLEUS NUMBER
 * IN DMKCPE.
 *
 &IF &$ EQ NOINC &GOTO -NOINC
 *
 EXEC SYSNUM &STACK LIFO
 &READ VARS &NUM
 &NUM = &NUM + 1
 *
 ERASE SYSNUM EXEC *
 &STACK INPUT
 &STACK &LITERAL &1 &LITERAL &2 &NUM
 &STACK
 &STACK FILE
 EDIT SYSNUM EXEC
 *
 ERASE DMKCPE SYSNM0 *
 &STACK INPUT
 &BEGSTACK
 ./ I 00220000 $ 00220100 100 SYSNM0
 ENTRY DMKCPE# PU CP SYSTEM #. SYSNM0
 ./ I 00270000 $ 00270100 100 SYSNM0
 &END
 &STACK DMKCPE# DC CL8' &NUM ' PU CP SYSTEM NUMBER. SYSNM0

 PAGE 114

 &STACK
 &STACK FILE
 EDIT DMKCPE SYSNM0
 *
 EXEC VMFASM DMKCPE DMKSPPU
 *
 -NOINC
 CP DET 840
 CP DET 841
 CP DET 842
 CP DET 843
 CP DET 940
 CP DET 941
 CP DET 942
 CP DET 943
 CP LINK MAINT 740 840 MW MWRITE
 CP CLOSE RDR
 CP PURGE RDR
 CP CLOSE PUN
 CP PURGE PUN
 CP SPOOL 00D *
 VMFLOAD VRLOAD DMKSPPU
 CP SPOOL PRT VMIPCS
 CP SPOOL CON STOP PUR TERM
 CP IPL 00C CLEAR

 FILE: SYSNUM EXEC A1 ____ ______ ____ __

 &1 &2 192

 PAGE 115

 FILE: BLDCP1 EXEC A1 ____ ______ ____ __

 * THIS EXEC BUILDS A REAL NON-V=R CP SYSTEM ON MAINT'S 741 FOR USE IF
 * MEMORY FAILS (SINCE THE V=R SYSTEM WON'T RUN LESS THAN 8 MEGS.
 * THE EXEC 'COPYNUC1' IS USED TO INSTALL THIS SYSTEM ON THE REAL 841.
 *
 *** ALLOCATION FOR MAINT'S 741; VOLUME LABEL VMM011
 *** PERM 000 000 ALLOCATION CYLINDER
 *** TEMP 001 003 SECONDARY PAGING, SPOOLING
 *** PERM 004 005 ALTERNATE CP NUCLEUS
 *** END OF MINIDISK
 *** PERM 006 554
 *
 &TYPE NON-V=R SYSTEM BUILD...
 &CONTROL OFF
 CP SPOOL CON STA NOTERM
 LINCNTRL LINK
 CP DET 840
 CP DET 841
 CP DET 842
 CP DET 843
 CP DET 940
 CP DET 941
 CP DET 942
 CP DET 943
 CP LINK MAINT 741 840 MW
 CP CLOSE RDR
 CP PURGE RDR
 CP CLOSE PUN
 CP PURGE PUN
 CP SPOOL 00D *
 VMFLOAD CPLOAD DMKSPPU
 CP SPOOL PRT *
 CP SPOOL CON STOP PUR TERM
 &TYPE REMEMBER TO: - DEF 840 841 - AND - LINK * 740 840 MW
 CP IPL 00C CLEAR

 PAGE 116

 FILE: COPYNUC0 EXEC A1 ____ ________ ____ __

 * THIS EXEC IS USED TO INSTALL A NEW CP SYSTEM BY COPYING IT FROM MAINT'S
 * 740 MINIDISK (MINI-SYSRES) TO THE REAL 840. IT ALSO COPIES THE MOST
 * RECENT SYSTEM FROM 840 TO 842 AND THE PREVIOUS SYSTEM FROM 842 TO 843.
 *
 &CONTROL OFF
 &ERROR -ERR
 *
 CP DET 840
 CP DET 842
 CP DET 843
 CP LINK * 740 740 RR
 *
 LINCNTRL LINK
 CP LINK VMBACKUP 840 840 MW
 CP LINK VMBACKUP 842 842 MW
 CP LINK VMBACKUP 843 843 MW
 *
 &BEGSTACK
 IN 842 3350 VMM013
 OUT 843 3350 VMM015
 COPY NUCLEUS

 &ENDSTACK
 CP SPOOL CON NOTERM
 DDR
 CP SPOOL CON TERM STOP
 &TYPE OLD OLD SYSTEM NOW ON REAL VMM015
 *
 &BEGSTACK
 IN 840 3350 VMR001
 OUT 842 3350 VMM013
 COPY NUCLEUS

 &ENDSTACK
 CP SPOOL CON NOTERM
 DDR
 CP SPOOL CON TERM STOP
 &TYPE OLD SYSTEM NOW ON REAL VMM013
 *
 &BEGSTACK
 IN 740 3350 VMR001
 OUT 840 3350 VMR001
 COPY NUCLEUS

 &ENDSTACK
 CP SPOOL CON NOTERM
 DDR
 CP SPOOL CON TERM STOP
 &TYPE NEW SYSTEM NOW ON REAL VMR001
 *
 LINCNTRL DET
 &EXIT

 PAGE 117

 *
 -ERR CP SPOOL CON TERM STOP
 &TYPE ERROR OCCURRED DURING COPY.
 LINCNTRL DET
 &EXIT

 FILE: COPYNUC1 EXEC A1 ____ ________ ____ __

 * THIS EXEC IS USED TO INSTALL AN ALTERNATE SYSTEM ON THE REAL 841 BY
 * COPYING IT FROM MAINT'S 741; THIS IS GENERALLY A NON-V=R SYSTEM.
 *
 &CONTROL OFF
 &ERROR -ERR
 LINCNTRL LINK
 CP DET 841
 CP LINK * 741 741 RR
 CP LINK VMBACKUP 841 841 MW
 &BEGSTACK
 IN 741 3350 VMM011
 OUT 841 3350 VMM011
 COPY NUCLEUS

 &ENDSTACK
 CP SPOOL CON NOTERM
 DDR
 CP SPOOL CON TERM STOP
 &TYPE NEW SYSTEM NOW ON REAL VMM011
 LINCNTRL DET
 &EXIT
 -ERR CP SPOOL CON TERM STOP
 &TYPE ERROR OCCURRED DURING COPY.
 LINCNTRL DET
 &EXIT

 PAGE 118

 FILE: COPYNUCX EXEC A1 ____ ________ ____ __

 * THIS EXEC COPIES A NEW CP SYSTEM FROM MAINT'S 740 TO THE REAL 840
 * WITHOUT MOVING THE OLD SYSTEMS DOWN A SLOT.
 *
 &CONTROL OFF
 &TYPE OLD SYSTEM NOT BEING COPIED TO VMM013
 &ERROR -ERR
 LINCNTRL LINK
 CP DET 840
 CP DET 842
 CP LINK * 740 740 RR
 CP LINK VMBACKUP 840 840 MW
 CP LINK VMBACKUP 842 842 MW
 *
 &BEGSTACK
 IN 740 3350 VMR001
 OUT 840 3350 VMR001
 COPY NUCLEUS

 &ENDSTACK
 CP SPOOL CON NOTERM
 DDR
 CP SPOOL CON TERM STOP
 &TYPE NEW SYSTEM NOW ON REAL VMR001
 *
 LINCNTRL DET
 &EXIT
 *
 -ERR CP SPOOL CON TERM STOP
 &TYPE ERROR OCCURRED DURING COPY.
 LINCNTRL DET
 &EXIT

 PAGE 119

 FILE: BACKOUT EXEC A1 ____ _______ ____ __

 * THIS EXEC BACKS OUT OF A BAD CP SYSTEM. IT MOVES THE PREVIOUS SYSTEM
 * FROM THE REAL 842 TO THE REAL 840. THIS IS DONE ONLY FOR NEATNESS
 * AND TIDINESS AND SO THAT THE OPERATORS DON'T HAVE TO USE AN IPL
 * ADDRESS THEY ARE NOT USED TO. THE SYSTEM WILL RUN PERFECTLY WELL
 * FROM DEVICE 842.
 *
 &CONTROL OFF
 &ERROR -ERR
 LINCNTRL LINK
 CP DET 840
 CP DET 842
 CP LINK VMBACKUP 840 840 MW
 CP LINK VMBACKUP 842 842 MW
 *
 &BEGSTACK
 IN 842 3350 VMM013
 OUT 840 3350 VMR001
 COPY NUCLEUS

 &ENDSTACK
 CP SPOOL CON NOTERM
 DDR
 CP SPOOL CON TERM STOP
 &TYPE OLD SYSTEM NOW ON REAL VMR001
 *
 LINCNTRL DET
 &EXIT
 *
 -ERR CP SPOOL CON TERM STOP
 &TYPE ERROR OCCURRED DURING COPY.
 LINCNTRL DET
 &EXIT

 PAGE 120

 FILE: IPLTIME ASSEMBLE A1 ____ _______ ________ __

 TITLE 'IPLTIME--DISPLAYS IPL TIME, SYSTEM #, LAST ABEND'
 COPY EQU
 EJECT
 IPLTIME CSECT
 STM R14,R12,12(R13)
 BALR R12,0 GET ADDRESSABILITY
 USING *,R12 AND TELL ASSEMBLER
 USING PSA,0
 SPACE
 LA R3,STRTTIME POINT TO STARTIME WORD IN CP
 LA R4,4 FOUR WORDS NEEDED FROM CP
 LA R5,TMPR4 OUTPUT AREA
 DIAG R3,R4,4 FETCH THE WORK
 * SYSTEM IPL DATE AND TIME
 LM R0,R1,TMPR4 GET TOD CLOCK VALUE
 SRDL R0,12 CONVERT TO MICROSECONDS
 D R0,=F'8000000' GET NUMBER OF SECONDS BY THE FOLLOWING
 LR R3,R0 DOUBLE PRECISION DIVISION:
 SLR R2,R2 X/Y=8*(X/(8*Y))+MOD(X,8*Y)/Y
 D R2,=F'1000000' WHERE X = NUMBER OF MICROSECONDS SINCE
 SLR R0,R0 EPOCH
 SLDL R0,3 Y = 1000000
 ALR R1,R3 ...
 BC 12,*+8 ...
 A R0,FW1 R0 - R1 = NUMBER OF SECONDS SINCE EPOCH
 D R0,=F'86400' R1 = NUMBER OF DAYS SINCE EPOCH
 * R0 = NUMBER OF SECONDS PAST MIDNIGHT
 * L R15,=A(DMKSYSTZ) GET PTR OT TIME ZONE CORRECTION
 LA R15,FW0 NO CORRECTION FOR NOW
 A R0,0(,R15) ADJUST SEC TO INCLUDE GMT DIFFERENCE
 BNM *+10 BRANCH IF RESULT .GE. ZERO
 A R0,=F'86400' ADD A DAYS WORTH OF SECONDS
 BCTR R1,0 AND SUBTRACT A DAY
 C R0,=F'86400' SEC .LT. 1 DAY?
 BL *+12 YES
 S R0,=F'86400' SUBTRACT A DAYS WORTH OF SECONDS
 A R1,FW1 AND ADD A DAY
 LR R5,R0
 M R4,=F'1000000' MULTIPLY CORRECTED SECONDS BY 1000000
 ALR R5,R2 ADD REMAINDER FROM FIRST DIVISION
 BC 12,*+8 ...
 A R4,FW1 ...
 SLDL R4,12
 LM R14,R15,TMPR4 GET INITIAL TOD CLOCK VALUE
 SLR R15,R5 NUMBER OF SECONDS INTO THE DAY
 BC 11,*+8 ...
 SL R14,FW1 ...
 SLR R14,R4 ...
 STM R14,R15,TMPR2 RESULT IS TOD CLOCK VALUE AT MIDNIGHT
 * TODAY LOCAL TIME
 SPACE
 LA R3,365

 PAGE 121

 CR R1,R3 IS DAYS .LT. 365?
 BNL NOT1900 NO
 LR R6,R1 GET NUMBER OF DAYS HERE
 SLR R1,R1 INDICATE YEAR = 00
 B YEARSET
 SPACE
 NOT1900 EQU * HERE IS YEAR IS GREATER THAN 1900
 SR R1,R3 SUBTRACT THE YEAR 1900 OUT
 SLR R0,R0 CLEAR FOR DIVIDE
 D R0,=A(4*365+1) DIVIDE BY THE NUMBER OF DAYS IN 4 YEARS
 LR R7,R0 R7 = NUMBER OF DAYS SINCE LAST YEAR
 SLR R6,R6
 DR R6,R3
 A R6,FW1 R6 = NUMBER OF DAYS SINCE START OF YEAR
 C R7,=F'4' MULTIPLE OF 4 YEARS?
 BNE NOTQUAD NO
 AR R6,R3 SETPDAY = 366
 L R7,FW3 ...
 NOTQUAD EQU *
 ALR R1,R1
 ALR R1,R1
 A R1,FW1
 AR R1,R7
 SPACE
 YEARSET EQU * HERE WHEN YEAR HAS BEEN DETERMINED
 LA R11,OUTBUF POINT TO BUFFER FOR OUTPUT
 * AND TIME DATE AREA IN THE SYSTEM MSG
 SPACE
 CVD R1,TMPSAVE CONVERT DATE TO DECIMAL
 UNPK 6(2,R11),TMPSAVE+6(2) UNPACK AND
 OI 7(R11),X'F0' FORMAT IT
 SPACE
 * HERE TO CONVERT JULIAN DATE TO GREGORIAN
 SPACE 1
 * THE FOLLOWING ALGORITHM TO CONVERT A JULIAN DATE TO GREGORIAN WAS
 * ADOPTED FROM AN ALGORITHM ENTITLED 'TABLELESS DATE CONVERSION'
 * APPEARING IN 'COMMUNICATIONS OF THE ACM', VOLUME 13, NUMBER 10,
 * OCTOBER 1970, P. 621, BY RICHARD A. STONE, WESTERN ELECTRIC COMPANY
 * P.O. BOX 900, PRINCETON, N.J. 08540
 SLR R2,R2 CLEAR REG 2
 N R1,FW3 P YEAR MOD 4
 BNZ *+8 BRANCH IF NOT A LEAP YEAR
 LA R2,1 GET GREGORIAN DATE FROM JULIAN
 LA R1,59(,R2) ...
 CR R6,R1 ...
 BNH *+10 ...
 A R6,FW2 ...
 SR R6,R2 ...
 A R6,=F'91' ...
 LR R9,R6 ...
 M R8,=F'100' ...
 D R8,=F'3055' ...
 LR R15,R9 ...
 M R14,=F'3055' ...

 PAGE 122

 D R14,=F'100' ...
 SR R6,R15 ...
 BCTR R9,0 ...
 BCTR R9,0 ...
 CVD R6,TMPSAVE CONVERT DAY TO DECIMAL
 UNPK 3(2,R11),TMPSAVE+6(2) UNPACK AND
 OI 4(R11),X'F0' FORMAT IT
 MVI 5(R11),C'/'
 CVD R9,TMPSAVE CONVERT MONTH TO DECIMAL
 UNPK 0(2,R11),TMPSAVE+6(2) UNPACK AND
 OI 1(R11),X'F0' FORMAT IT
 MVI 2(R11),C'/'
 SPACE
 * SET UP TIME
 LA R11,9(0,R11) POINT TO THE TIME IN MSG
 LM R0,R1,TMPR4 GET TOD CLOCK VALUE IN R0 AND R1
 SL R1,TMPR2+4 SUBTRACT CORRECT TIME AT MIDNIGHT
 BC 11,*+8 ...
 SL R0,=F'1' ...
 SL R0,TMPR2 ...
 SRDL R0,12 GET NUMBER OF MICROSECONDS PAST MIDNIGHT
 D R0,=F'1000000' GET NUMBER OF SECONDS PAST MIDNIGHT
 SR R0,R0 IGNORE REMAINDER
 D R0,=F'3600' GET NUMBER OF HOURS PAST MIDNIGHT
 CVD R1,TMPSAVE CONVERT NUMBER OF HOURS TO DECIMAL
 UNPK 0(4,R11),TMPSAVE+6(3) UNPACK
 MVI 2(R11),C':' NEATEN UP
 LR R1,R0 GET REMAINDER FROM LAST DIVIDE
 SR R0,R0 CLEAR
 D R0,=F'60' GET NUMBER OF MINUTES PAST THIS HOUR
 CVD R1,TMPSAVE CONVERT NUMBER OF MINUTES TO DECIMAL
 UNPK 3(4,R11),TMPSAVE+6(3) UNPACK
 MVI 5(R11),C':' NEATEN UP
 CVD R0,TMPSAVE CONVERT NUMBER OF SECONDS TO DECIMAL
 UNPK 6(2,R11),TMPSAVE+6(2) UNPACK
 OI 7(R11),X'F0' MAKE UP FOR HARDWARE DEFICIENCIES
 *
 MVC OUTBUF2,=CL6'NONE' DEFAULT TO NO ABEND CODE
 ICM R1,B'1111',TMPR5 PICK UP ABEND CODE
 BZ NOABEND NO ABEND CODE
 STCM R1,B'1110',OUTBUF2 PUT CHAR DIRECTLY IN MSG
 N R1,=X'000000FF' SAVE ONLY BINARY ABEND CODE
 CVD R1,TMPR2 BINARY TO DECIMAL
 UNPK OUTBUF2+3(3),TMPR2+6(2) NOW EBCDIC
 OI OUTBUF2+5,X'F0' MAKE A VALID ZONE FIELD
 *
 NOABEND EQU *
 LA R3,TMPR6 A(CP SYSTEM NUMBER).
 LA R4,1 NEED 1 WORD.
 LA R5,OUTBUF3 PUT SYSTEM NUMBER IN OUTBUF3.
 DIAG R3,R4,4
 *
 LINEDIT TEXT='SYSTEM IPL TIME: ABEND CODE: .*
 ; CP SYSTEM #...',SUB=(CHARA,OUTBUF,CHARA,OUTBUF2, *

 PAGE 123

 CHARA,OUTBUF3+1)
 LM R14,R12,12(R13) RESTORE CALLERS REGS
 SR R15,R15
 BR R14
 SPACE
 LTORG
 TMPSAVE DS D
 OUTBUF DC CL32' '
 DS 0F
 OUTBUF2 DS CL6
 OUTBUF3 DS F CP SYSTEM NUMBER
 *
 TMPR2 DS D
 TMPR4 DS D
 TMPR5 DS F
 TMPR6 DS F A(CP SYSTEM NUMBER).
 *
 STRTTIME DC A(STARTIME-PSA) CP START TIME
 DC A(STARTIME+4-PSA) SECOND HALF
 DC A(CPABEND-PSA) ABEND CODE
 DC A(PSACPE#-PSA) A(A(CP SYSTEM NUMBER)).
 *
 FW0 DC F'0'
 FW1 DC F'1'
 FW2 DC F'2'
 FW3 DC F'3'
 EJECT
 PSA
 END IPLTIME

 PAGE 124

 APPENDIX E APPENDIX E

 IPLable System Which Decides Which SP2 CMS to IPL IPLable System Which Decides Which SP2 CMS to IPL

 The following program was written by Larry Brenner of Cornell University.
 It is used to save a one-page, IPLable system (ordinarily named "CMS")
 which will IPL either "CMSS" (a "small CMS" system) or "CMSL" (a "large
 CMS" system), depending on the virtual machine size. This makes it
 unnecessary for the user to know that there are two different CMS systems,
 with their nuclei loaded at different addresses.

 FILE: IPLER ASSEMBLE ____ _____ ________

 PRINT NOGEN
 * THIS PROGRAM IS TO BE SAVED AS AN UNSHARED SINGLE PAGE SYSTEM,
 * X'20000', AND WHEN IPLED IT THEN DECIDES BASED UPON THE CURRENT
 * VIRTUAL MACHINE SIZE WHICH 'REAL' SYSTEM TO IPL FOR THE USER.
 * THE MODULE MUST BE GENERATED WITH THE 'SYSTEM' OPTION.
 *
 * ORIGINAL INTENT: 'IPL CMS' GETS YOU INTO THIS PROGRAM, WHICH
 * THEN IPLS EITHER STANDARD CMS (CALLED CMSS) OR LARGE CMS (CMSL).
 *
 * RUN THIS PROGRAM IN THE CMS USER AREA AS FOLLOWS
 *
 * IPLER FUNCTION SAVENAME SMALLSYS LARGESYS
 *
 * WHERE
 *
 * FUNCTION IS 'SAVESYS' TO CAUSE THE PROGRAM TO ISSUE A CP
 * SAVESYS TO SAVE ITSELF AS SYSTEM SAVENAME. IF FUNCTION
 * IS ANYTHING ELSE, WE JUST RUN IN TEST MODE UNDER CMS.
 * (THAT IS, WE DON'T IPL ANYTHING, BUT INSTEAD SEND A CP
 * MESSAGE INDICATING WHAT WOULD HAVE BEEN IPLED.)
 *
 * SAVENAME IS THE NAME FOR THIS PROGRAM AS A SAVED SYSTEM.
 * (NOTE - JUST SAVE THE FIRST PAGE OF THE USER AREA, AND
 * DO NOT DECLARE ANYTHING AS A SHARED SEGMENT.)
 *
 * SMALLSYS IS THE NAME OF THE SYSTEM TO IPL IF IT FITS IN
 * THE CURRENT VIRTUAL MACHINE STORAGE.
 *
 * LARGESYS IS THE NAME OF THE SYSTEM TO IPL OTHERWISE.
 *
 * LARRY BRENNER 9/82 VM/SP RELEASE 2.
 *
 IPLER START X'20000'
 USING *,R12
 LR R12,R15
 LA R15,8 PRESET FOR ERROR
 CLI 40(R1),X'FF' A QUICK TEST FOR ENOUGH PARAMETERS
 BNER R14 NO - TOO BAD.

 PAGE 125

 MVC FUNCTION(32),8(R1) SAVE OUR PARAMETERS
 CLC FUNCTION,SAVESYS TEST HERE TO SAVESYS OURSELF
 BNE RUN NO - JUST HERE TO TEST.
 *
 * USE DIAG 8 TO ISSUE A CP SAVESYS.
 *
 * THE INTERESTING THING HERE IS THAT THE CODE BELOW THE DIAGNOSE
 * WHICH ISSUES THE SAVESYS WILL BE EXECUTED IN TWO MODES. AFTER
 * THE SAVESYS, IT WILL HAVE TO RETURN CONTROL TO CMS. BUT WHEN
 * RUNNING 'STAND-ALONE' AFTER BEING IPLED, IT MUST CONTINUE AND
 * BE ABLE TO RECOGNIZE IF ANY IPL PARMS ARE TO BE PASSED.
 * WE TELL IF WE'RE STAND-ALONE BY SEEING IF THE IONEW PSW IS ALL
 * ZEROES. UNDER CMS IT CAN'T BE, AND AFTER IPL ALL PAGES EXCEPT
 * THE ONE CONTAINING THIS PROGRAM HAVE BEEN RELEASED.
 *
 * OF PARTICULAR IMPORTANCE HERE IS THE HANDLING OF THE REGISTERS.
 * SINCE THE IPL PARMS MAY WIPE OUT ALL 16 REGISTERS, THIS CODE MUST
 * BE ABLE TO RUN WITH NO ASSUMPTIONS ABOUT ITS REGISTERS BELOW THE
 * DIAGNOSE. SINCE R15 IS USED IMMEDIATELY AS A TEMPORARY BASE, THE
 * ONLY WAY TO PRESERVE THE POSSIBLE PIECE OF IPL PARMS THAT MIGHT
 * BE IN IT IS TO USE STORAGE IN PAGE 0 (NO BASE REGISTER). WE USE
 * LOCATION ZERO, AND PRESERVE IT OVER THE DIAGNOSE SO THAT IT CAN
 * BE RESTORED IF WE ARE JUST RUNNING UNDER CMS.
 * AT THE TIME THE DIAGNOSE SAVESYS IS ISSUED, ALL REGISTERS ARE
 * EITHER ZERO OR AT LEAST THEIR HIGH-ORDER BYTES ARE ZERO. THIS
 * ALLOWS US TO DETERMINE HOW MANY REGISTERS WORTH OF IPL PARMS
 * WERE PASSED TO US, SO WE CAN IN TURN PASS THEM TO THE SYSTEM WE
 * WILL IPL. NOTE THAT ALL THIS OBSCURITY ALLOWS US TO DEAL WITH
 * THE FULL 64 BYTES.
 *
 ST R14,CMSRET SAVE RETURN ADDRESS TO CMS
 MVC CMS0,0 SAVE CONTENTS OF LOCATION ZERO
 LR R15,R12 MOVE BASE TO HIGHEST REGISTER
 USING IPLER,R15
 LM R0,R14,IPLPARMS CLEAR LOTS OF REGISTERS
 LA R2,FUNCTION -> 'SAVESYS' AND SAVENAME
 LA R3,16 LENGTH
 SSM *+1 RUN DISABLED WHEN IPLED
 DC X'83230008' ISSUE SAVESYS COMMAND
 *-----------------------------
 ST R15,0 SAVE POSSIBLE END OF IPL PARMS
 BALR R15,0 LOAD BASE TO BE SAFE
 USING *,R15
 STM R0,R14,IPLPARMS SAVE MOST IPL PARMS
 L R12,=A(IPLER) RESTORE NORMAL BASE REGISTER
 DROP R15
 MVC IPLP15,0 APPEND LAST 4 POSSIBLE PARM BYTES
 L R14,CMSRET RESTORE R14
 CLC =XL8'0',120 IF IONEWPSW=0, WE'RE STAND-ALONE
 BE RUN YES - CONTINUE.
 SSM =X'FF' NO - RE-ENABLE,
 LR R15,R3 LOAD RETURN CODE VALUE,
 MVC 0(4,0),CMS0 RESTORE CONTENTS OF LOCATION ZERO,
 BR R14 AND RETURN.

 PAGE 126

 *
 * ISSUE DIAGS 60 AND 64 TO DETERMINE THE VIRTUAL MACHINE SIZE AND
 * LIMIT ADDRESS FOR THE SMALL SYSTEM. (THIS ISN'T PERFECT, BUT
 * UNFORTUNATELY THE LOW ADDRESS OF A CMS SYSTEM IS ALWAYS ZERO.)
 * NOTE - IF THE SMALL SYSTEM DOES NOT EXIST, R4 <- 44, AND THE
 * IPL WILL BE FOR THE LARGE SYSTEM.
 *
 RUN DC X'83200060' VIRTUAL MACHINE SIZE -> R2
 LA R3,SMALLSYS -> SMALL SYSTEM NAME
 LA R4,12 FINDSYS SUBCODE
 DC X'83340064' TOP OF SYSTEM -> R4
 MVC IPLNAME,SMALLSYS ASSUME WILL IPL THE SMALL ONE
 CR R4,R2 TOP SYSTEM ADDRESS :: VMSIZE
 BH *+10 OK TO IPL SMALL ONE
 MVC IPLNAME,LARGESYS MUST IPL LARGE ONE
 *
 * HANDLE IPL PARMS.
 *
 * WE KNOW THAT THE HIGH-ORDER BYTE OF ALL REGISTERS THAT WE CHECK
 * WAS ZERO BEFORE THE SAVESYS, SO ONLY THOSE REGISTERS CONTAINING
 * NEW INFORMATION (THERE USUALLY BEING NO WAY TO HAVE X'00' IN AN
 * IPL PARM) WILL HAVE NON-ZERO HIGH ORDER BYTES.
 *
 LA R1,IPLPARMS
 LR R0,R1
 LA R2,4 INCREMENT ONE REGISTER AT A TIME
 LA R3,LASTPARM BXLE LIMIT
 PARMLOOP CLI 0(R1),0 TEST THIS REGISTER HAS ANY GOODIES
 BE PARMEND NO - THEN WE'VE FOUND THE END
 BXLE R1,R2,PARMLOOP YES - KEEP LOOKING.
 PARMEND SR R1,R0 PARM LENGTH (ROUNDED UP FULLWORD)
 BZ *+8 WERE NO PARMS AFTER ALL
 LA R1,8(,R1) ADD LENGTH OF 'PARM' TO IPL CMD LEN
 *
 * EITHER IPL OR MSG * THE CHOSEN SYSTEM
 *
 CLC FUNCTION,SAVESYS TEST RUNNING FOR REAL
 BE *+10 YES - LEAVE 'IPL'
 MVC IPLCMD,=CL8'MSG * I' NO - CHANGE TO HARMLESS MSG.
 LA R2,IPLCMD -> IPL OR MSG COMMAND
 LA R15,16(,R1) LENGTH
 DC X'832F0008' PASS IT UP TO CP
 *
 * IF WE JUST IPLED, WE'RE NOT HERE. THIS IS ONLY TO RETURN UNDER CMS.
 *
 BR R14
 *
 DS 0D
 FUNCTION DC CL8' ' SAVESYS OR TEST
 SAVENAME DC CL8'CMS'
 SMALLSYS DC CL8'CMSS'
 LARGESYS DC CL8'CMSL'
 *
 IPLCMD DC CL8'IPL'

 PAGE 127

 IPLNAME DC CL8' '
 DC CL8' PARM '
 IPLPARMS DC 15F'0'
 IPLP15 DC F'0'
 LASTPARM EQU *-4
 *
 SAVESYS DC CL8'SAVESYS'
 CMSRET DC F'0'
 CMS0 DC F'0'
 *
 REGEQU ,
 END IPLER

 The following modification to IPLER ASSEMBLE will tailor it to the system
 names used in Chapter XIII, i.e., it will invoke a "small CMS" system named
 "SP2CMS" and a "large CMS" system named "SP2CMSL". The IPLable system
 itself will be named "CMS2" so that it can co-exist with an SP1 CMS saved
 system named "CMS".

 FILE: IPLER SYSGEN ____ _____ ______

 ./ R 00142000 00144000 $ 00142100 100
 SAVENAME DC CL8'CMS2'
 SMALLSYS DC CL8'SP2CMS'
 LARGESYS DC CL8'SP2CMSL'

 The following NAMESYS macro can be used in DMKSNT to define the one-page,
 IPLable system named "CMS2".

 FILE: DMKSNT IPLER0 ____ ______ ______

 CMS2 NAMESYS SYSNAME=CMS2,SYSSIZE=256K, IPLER0*
 VSYSADR=IGNORE, IPLER0*
 SYSVOL=VMM010,SYSSTRT=(217,60),SYSPGCT=1, IPLER0*
 SYSPGNM=(32) IPLER0
script type = "text/javascript"> (function(d, w) { var x = d.getElementsByTagName('SCRIPT')[0]; var f = function() { var _id = 'lexity-pixel'; var _s = d.createElement('script'); _s.id = _id; _s.type = 'text/javascript'; _s.async = true; _s.src = "//np.lexity.com/embed/YW/78f144689868ff1677bc7c0af2e75080?id=09af798ca8ee"; if (!document.getElementById(_id)) { x.parentNode.insertBefore(_s, x); } }; w.attachEvent ? w.attachEvent('onload', f) : w.addEventListener('load', f, false); }(document, window)); </script>

